Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Brasses, Complex

Bonding Agents. These materials are generally only used in wire cable coat compounds. They are basically organic complexes of cobalt and cobalt—boron. In wire coat compounds they are used at very low levels of active cobalt to aid in the copper sulfide complex formation that is the primary adherance stmcture. The copper sulfide stmcture builds up at the brass mbber interface through copper in the brass and sulfur from the compound. The dendrites of copper sulfide formed entrap the polymer chains before the compound is vulcanized thus hoi ding the mbber firmly to the wire. [Pg.251]

Electroplating. Aluminum can be electroplated by the electrolytic reduction of cryoHte, which is trisodium aluminum hexafluoride [13775-53-6] Na AlE, containing alumina. Brass (see COPPERALLOYS) can be electroplated from aqueous cyanide solutions which contain cyano complexes of zinc(II) and copper(I). The soft CN stabilizes the copper as copper(I) and the two cyano complexes have comparable potentials. Without CN the potentials of aqueous zinc(II) and copper(I), as weU as those of zinc(II) and copper(II), are over one volt apart thus only the copper plates out. Careful control of concentration and pH also enables brass to be deposited from solutions of citrate and tartrate. The noble metals are often plated from solutions in which coordination compounds help provide fine, even deposits (see Electroplating). [Pg.172]

The outstanding properties of copper-base materials are high electrical and thermal conductivity, good durabihty in mildly corrosive chemical environments and excellent ductility for forming complex shapes. As a relatively weak material, copper is often alloyed with zinc (brasses), tin (bronzes), aluminum and nickel to improve its mechanical properties and corrosion resistance. [Pg.77]

D. of lead in brass by, 770 direct reading instruments, 775, 776 electrodes for, 763, 771 equipment for, 760, 764 excitation sources for, 763, 773, 774 general discussion of, 8, 758 internal standard method, 769 investign. of a complex inorganic mixture, 770... [Pg.863]

Copper and brasses in the systems are more resistant to corrosion because of a stable oxide film however, if ammonia is present together with oxygen, corrosion of copper and copper oxide rapidly occurs. The corrosion is an oxidation process and results in the formation of the ammonia-copper complex [Cu(NH3)42+], Corrosion of nickel and zinc components also may occur in like fashion. [Pg.285]

The /3-alloys are different in nature from the 7-alloys and the a-manganese and /3-manganese structures discussed above, in that they are not complex structures, but are simple, being based upon the body-centered arrangement. /3-Brass, for example, has either a disordered structure, above 480°K, the copper and zinc atoms in essentially equal number being distributed largely at random over the points of a body-centered cubic lattice, or an ordered structure, below 300°K, with copper and zinc at the positions 000 and, respectively, of the cubic unit. Moreover, the physical properties of /3-brass are not those that indicate a filled zone structure. [Pg.371]

These four main types of apparatus being defined, (scientiste and manufacturers have let their imagination go in order to create apparatus). There are now about ten models, which differ by the volume of liquid used (from 2 cm to about 70 cm, the metal used for the cup (brass, aluminium), the heating mode (water bath, Bunsen burner, electrical), the type of gas used by the pilot light (natural gas, butane), the level of complexity of automatic controls some apparatus equipped with several cups can actually be programmed in order to make measurements automatically without the help of the operator. The liquid can be shaken manually or, thanks to an electrical motor, the ignition can be manual or automatic. [Pg.56]

The reddish metal was already known in prehistoric times. It occasionally occurs as a native metal, but mostly in conspicuous green ores, from which it is extracted relatively easily. It is convenient to work, but not very hard. Not very optimal as a tool ("Otzi the Iceman" had a copper axe with him). Only through the addition of tin is the more useful bronze obtained. Its zinc alloy is the versatile and widely used brass. Copper is one of the coinage metals. Water pipes are commonly made of copper. Its very good thermal and electrical conductivity is commonly exploited (cable ), as well as its durability (roofs, gutters), as the verdigris (basic copper carbonate) protects the metal. Cu phthalocyanines are the most beautiful blue pigments. Seems to be essential to all life as a trace element. In some molluscs, Cu replaces Fe in the heme complex. A 70-kg human contains 72 mg. [Pg.131]

Electrochemical Instrumentation. For the Ru complexes, a 1 cm diameter platinum disk brazed onto a brass holder was used as a working electrode. It was masked with ChemGrip (a teflon based epoxy) except for the upper face. Prior to use, it was polished with 1 micron diamond paste (Buehler) and rinsed with water, acetone and methanol. The working electrode for each Os complex was the uppermost platinum layer of a platinum/carbon layered synthetic microstructure (LSM) (Energy Conversion Devices). The LSM consisted of 200 layer pairs of carbon and platinum whose thicknesses were 24.4 and 17.0 A, respectively and where platinum was the outermost layer. The LSM was placed in 1.0 M H2SO4 and cleaned... [Pg.219]

The Hume-Rothery types listed in Table 4.6 include structures of different complexity ranging from the simple close-packed (fee and hep) and bcc structures to the more complex Mn-type and 7-brass type structures. As for the hexagonal hep structures, notice that for this type several variations are known three branches of this structure are generally considered. The (-hep corresponds to the true closest packing with the value of the axial ratio da close to the ideal one ((8/3) = 1.6329. .. (see 3.7.4 and Fig. 3.16). The e-hex corresponds to da ranging around 1.55 to 1.58 and the r/ phase to c/a values of about 1.77 to 1.88. As observed by Lee and Hoistad (1995), the various hexagonal types can be considered genuinely different. [Pg.296]

Catalytic forms of copper, mercury and silver acetylides, supported on alumina, carbon or silica and used for polymerisation of alkanes, are relatively stable [3], In contact with acetylene, silver and mercury salts will also give explosive acetylides, the mercury derivatives being complex [4], Many of the metal acetylides react violently with oxidants. Impact sensitivities of the dry copper derivatives of acetylene, buten-3-yne and l,3-hexadien-5-yne were determined as 2.4, 2.4 and 4.0 kg m, respectively. The copper derivative of a polyacetylene mixture generated by low-temperature polymerisation of acetylene detonated under 1.2 kg m impact. Sensitivities were much lower for the moist compounds [5], Explosive copper and silver derivatives give non-explosive complexes with trimethyl-, tributyl- or triphenyl-phosphine [6], Formation of silver acetylide on silver-containing solders needs higher acetylene and ammonia concentrations than for formation of copper acetylide. Acetylides are always formed on brass and copper or on silver-containing solders in an atmosphere of acetylene derived from calcium carbide (and which contains traces of phosphine). Silver acetylide is a more efficient explosion initiator than copper acetylide [7],... [Pg.222]

We now return to the case of codeposition of metals whose standard electrode potentials are wide apart. As stated, the deposition potentials [Eq. (11.2)] are brought together by complexing the more noble metal ions, as illustrated below for the case of the codeposition of copper and zinc as brass. [Pg.204]

Similar complexes of silver, copper and other metals are known. Some of them change colors on heating and are used in heat-sensitive paints and applied to machine parts made out of brass or iron ... [Pg.572]

The nse of complexation to allow codeposition of alloys is well known in electroplating. The best-known example is that of brass (Cu/Zn) plating, where cyanide, which is a stronger complex for Cu than it is for Zn, brings the deposition potentials of the two metals, originally far apart, to almost the same value. There is a direct connection between this effect and the equivalent one for CD. This arises from the fact that, for both CD and electrodeposition of alloys (we in-clnde mixed metal compounds in the term alloy), the effect of the complexant is to lower the concentration of free cations. For CD this affects the deposition throngh the solnbility product, while for electrodeposition it affects the deposition potential through the Nemst equation ... [Pg.22]


See other pages where Brasses, Complex is mentioned: [Pg.198]    [Pg.172]    [Pg.198]    [Pg.172]    [Pg.283]    [Pg.12]    [Pg.420]    [Pg.165]    [Pg.159]    [Pg.452]    [Pg.424]    [Pg.1178]    [Pg.51]    [Pg.696]    [Pg.706]    [Pg.5]    [Pg.469]    [Pg.21]    [Pg.132]    [Pg.242]    [Pg.324]    [Pg.239]    [Pg.309]    [Pg.181]    [Pg.21]    [Pg.19]    [Pg.298]    [Pg.203]    [Pg.203]    [Pg.1055]    [Pg.693]    [Pg.253]    [Pg.251]    [Pg.987]    [Pg.321]   
See also in sourсe #XX -- [ Pg.22 , Pg.34 , Pg.52 ]




SEARCH



Brass

© 2024 chempedia.info