Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenyl boronate

Copper-mediated reaction of a 1,1-zinc, boron alkenyl bimetallic with an electrophile preparation of 1-chloro-5-oxo-6-undecyne23... [Pg.197]

Cis-olefins or cis./rjns-dienes can be obtained from alkynes in similar reaction sequences. The alkyne is first hydroborated and then treated with alkaline iodine. If the other substituents on boron are alkyl groups, a cis-olefin is formed (G. Zweifel, 1967). If they are cir-alkenyls, a cis, trans-diene results. The reactions are thought to be iodine-assisted migrations of the cis-alkenyl group followed by (rans-deiodoboronation (G. Zweifel, 1968). Trans, trans-dienes are made from haloalkynes and alkynes. These compounds are added one after the other to thexylborane. The alkenyl(l-haloalkenyl)thexylboranes are converted with sodium methoxide into trans, trans-dienes (E. Negishi, 1973). The thexyl group does not migrate. [Pg.37]

The reactions described so far can be considered as alkylation, alkenylation, or alkynylation reactions. In principle all polar reactions in syntheses, which produce monofunctional carbon compounds, proceed in the same way a carbanion reacts with an electropositive carbon atom, and the activating groups (e.g. metals, boron, phosphorus) of the carbanion are lost in the work-up procedures. We now turn to reactions, in which the hetero atoms of both the acceptor and donor synthons are kept in a difunctional reaction produa. [Pg.50]

Mercuration. Mercury(II) salts react with alkyl-, alkenyl-, and arylboranes to yield organomercurials, which are usehil synthetic intermediates (263). For example, dialkyhnercury and alkyhnercury acetates can be prepared from primary trialkylboranes by treatment with mercury(II) chloride in the presence of sodium hydroxide or with mercury(II) acetate in tetrahydrofuran (3,264). Mercuration of 3 -alkylboranes is sluggish and requires prolonged heating. Alkenyl groups are transferred from boron to mercury with retention of configuration (243,265). [Pg.315]

Perfluoroallyl fluorosulfate is prepared by the treatment oiperfluoropropene with sulfur tnoxide m the presence of boron catalysts [2, 3, 4, 5, 6, 7] (equation 2) Perfluoroisopropyl allyl ether reacts similarly to give 58% polyfluoroallyl fluorosulfate in a cis/trans ratio of 6 4 [S] Sultones are the exclusive products without catalyst. Polyfluoroolefins such as 2-hydropentafluoropropylene [9], (2,3-dichloropropyl)tri-fluoroethylene [70], perfluoropropene [2, i], perfluoroisopropyl alkenyl ethers [S], and acyclic polyfluoroallyl ethers [77] undergo sulfur trioxidation to regioselectively produce the corresponding P-sultones in high yield... [Pg.403]

Palladium-catalyzed carbon-carbon bond forming reactions like the Suzuki reac-tion as well as the Heck reaction and the Stille reaction, have in recent years gained increased importance in synthetic organic chemistry. In case of the Suzuki reaction, an organoboron compound—usually a boronic acid—is reacted with an aryl (or alkenyl, or alkynyl) halide in the presence of a palladium catalyst. [Pg.272]

The only preparative limitation to this method is the occasional coproduction of alkenyl-boronates that presumably arise via a-elimination pathways of the ate complex generated upon addition of the organometallic reagent to the a-haloalkylboronate4,29-30. This problem is illustrated in the synthesis of 5-(rm-butyldimethylsilyloxy)-2-pentenyl-substituted dioxaborolane30. [Pg.268]

I.3.3.3.3.1.1.3. From Alkenyl Halides and Zinc-Boron Compounds... [Pg.269]

At about die same time, die application of the Suzuki coupling, the crosscoupling of boronic acids widi aryl-alkenyl halides in die presence of a base and a catalytic amount of palladium catalyst (Scheme 9.12),16 for step-growth polymerization also appeared. Schliiter et al. reported die synthesis of soluble poly(para-phenylene)s by using the Suzuki coupling condition in 1989 (Scheme 9.13).17 Because aryl-alkenyl boronic acids are readily available and moisture stable, the Suzuki coupling became one of die most commonly used mediods for die synthesis of a variety of polymers.18... [Pg.470]

The metal catalysed hydroboration and diboration of alkenes and alkynes (addition of H-B and B-B bonds, respectively) gives rise to alkyl- or alkenyl-boronate or diboronate esters, which are important intermediates for further catalytic transformations, or can be converted to useful organic compounds by established stoichiometric methodologies. The iyn-diboration of alkynes catalysed by Pt phosphine complexes is well-established [58]. However, in alkene diborations, challenging problems of chemo- and stereo-selectivity control stiU need to be solved, with the most successful current systems being based on Pt, Rh and An complexes [59-61]. There have been some recent advances in the area by using NHC complexes of Ir, Pd, Pt, Cu, Ag and Au as catalysts under mild conditions, which present important advantages in terms of activity and selectivity over the established catalysts. [Pg.38]

Alkenylboronic acids, alkenyl boronate esters, and alkenylboranes can be coupled with alkenyl halides by palladium catalysts to give dienes.223... [Pg.740]

These reactions proceed with retention of double-bond configuration in both the boron derivative and the alkenyl halide. The oxidative addition by the alkenyl halide, transfer... [Pg.740]

Organoboranes can also be used to construct carbon-carbon bonds by several other types of reactions that involve migration of a boron substituent to carbon. One such reaction involves a-halo carbonyl compounds.20 For example, ethyl bromoac-etate reacts with trialkylboranes in the presence of base to give alkylated acetic acid derivatives in excellent yield. The reaction is most efficiently carried out with a 9-BBN derivative. These reactions can also be effected with (3-alkenyl derivatives of 9-BBN to give (3,y-unsaturated esters.21... [Pg.792]

The same ligand allowed the cross-coupling of various boronic acids (aryl, alkenyl, alkyl) with alkyl bromides in the system (Pd(OAc)2/PMe Bu2, BuOK. amyl alcohol, r.t.).411... [Pg.347]

A rapid MW-assisted palladium-catalyzed coupling of heteroaryl and aryl boronic acids with iodo- and bromo-substituted benzoic acids, anchored on TentaGel has been achieved [174]. An environmentally friendly Suzuki cross-coupling reaction has been developed that uses polyethylene glycol (PEG) as the reaction medium and palladium chloride as a catalyst [175]. A solventless Suzuki coupling has also been reported on palladium-doped alumina in the presence of potassium fluoride as a base [176], This approach has been extended to Sonogashira coupling reaction wherein terminal alkynes couple readily with aryl or alkenyl iodides on palladium-doped alumina in the presence of triphenylphosphine and cuprous iodide (Scheme 6.52) [177]. [Pg.210]

Stereo- and regioselective synthesis of trienes and tetraenes has been reported by palladium-catalysed coupling of (E)- or (Z)-l-alkenyl boronates with (E)- or (Z)-2-bromo-1-phenylthio-l-alkenes followed by treatment with a Grignard reagent in the presence of a nickel catalyst (equation 146)259. [Pg.447]

However, these compounds proved to be unstable and difficult to characterize. The authors reasoned that the source of the instability was likely to be the trialkylboron moiety. Boronates are more stable than trialkylboranes since the lone-pairs of electrons on an oxygen atom can donate to the empty orbital of a boron atom. The corresponding gem-boriozirconocenes should also be more stable. Thus, hydrozirconation of the alkenyl-... [Pg.237]

The first example of a stable 1,1-bidentate Lewis acid based on boron and zirconium has been reported [35]. The synthesis of 22 is outlined in Scheme 7.12. Treatment of hex-l-yne with HBBr2 Me2S followed by conversion of the dibromoboronic ester to the corresponding alkenyl boronic acid and esterification with propane-1,3-diol provided the alkenyl boronic ester. Hydrozirconation of this compound with 3 equivalents of the Schwartz reagent, Cp2Zr(H)Cl [57], afforded the desired product 22 in 86% yield. [Pg.243]

The application of in situ-generated (alkoxy)palladium(II) species (Scheme 14.23) can be extended to reactions of a-carbonates with organoboron compounds. Crosscouplings of allenes 108 with aryl (or alkenyl) boron acids or their esters catalyzed by a palladium(O) complex afforded the 2-aryl(alkenyl)-l,3-butadienes 109 in excellent yields (Scheme 14.24) [53], The coupling reactions of 9-BBN-derived intermediates such as ester 111 can be accelerated by applying K3P04 as additive (Eq. 14.15). [Pg.864]


See other pages where Alkenyl boronate is mentioned: [Pg.209]    [Pg.215]    [Pg.218]    [Pg.316]    [Pg.318]    [Pg.36]    [Pg.255]    [Pg.312]    [Pg.63]    [Pg.208]    [Pg.12]    [Pg.63]    [Pg.21]    [Pg.300]    [Pg.741]    [Pg.187]    [Pg.366]    [Pg.155]    [Pg.309]    [Pg.48]    [Pg.110]    [Pg.462]    [Pg.231]    [Pg.237]    [Pg.243]    [Pg.245]    [Pg.245]    [Pg.273]    [Pg.565]    [Pg.235]    [Pg.114]   
See also in sourсe #XX -- [ Pg.134 ]




SEARCH



Alkenyl boronate aldehyde

Alkenyl boronates

Alkenyl boronates

Alkenyl pinacol boronate

Alkenyl-boronic ester

Alkenylation and Arylation of Boron-Bound Groups (Suzuki Coupling)

Aryl and alkenyl boronic acid

Boron compounds alkenyl-aryl reactions

Boron compounds alkenylation

Boronic acids alkenyl

Lewis-acid-catalyzed Nucleophilic Addition of Functionalized Alkenyl Boronic Esters to Activated N-acyliminium Ions

© 2024 chempedia.info