Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bonds enzyme-inhibitor

This class of inhibitors usually acts irreversibly by permanently blocking the active site of an enzyme upon covalent bond formation with an amino acid residue. Very tight-binding, noncovalent inhibitors often also act in an irreversible fashion with half-Hves of the enzyme-inhibitor complex on the order of days or weeks. At these limits, distinction between covalent and noncovalent becomes functionally irrelevant. The mode of inactivation of this class of inhibitors can be divided into two phases the inhibitors first bind to the enzyme in a noncovalent fashion, and then undergo subsequent covalent bond formation. [Pg.322]

The often fast binding step of the inhibitor I to the enzyme E, forming the enzyme inhibitor complex E-I, is followed by a rate-determining inactivation step to form a covalent bond. The evaluation of affinity labels is based on the fulfillment of the following criteria (/) irreversible, active site-directed inactivation of the enzyme upon the formation of a stable covalent linkage with the activated form of the inhibitor, (2) time- and concentration-dependent inactivation showing saturation kinetics, and (3) a binding stoichiometry of 1 1 of inhibitor to the enzyme s active site (34). [Pg.324]

The enzyme catalyzes the hydrolysis of an amide bond linkage with water via a covalent enzyme-inhibitor adduct. Benzoxazinones such as 2-ethoxy-4H-3,l-benzoxazin-4-one [41470-88-6] (23) have been shown to completely inactivate the enzyme in a competitive and stoichiometric fashion (Eigure 5). The intermediate (25) is relatively stable compared to the enzyme-substrate adduct due to the electron-donating properties of the ortho substituents. The complex (25) has a half-life of reactivation of 11 hours. [Pg.324]

Figure 11.9 A diagram of the active site of chymotrypsin with a bound inhibitor, Ac-Pro-Ala-Pro-Tyr-COOH. The diagram illustrates how this inhibitor binds in relation to the catalytic triad, the strbstrate specificity pocket, the oxyanion hole and the nonspecific substrate binding region. The Inhibitor is ted. Hydrogen bonds between Inhibitor and enzyme are striped. (Adapted from M.N.G. James et al., /. Mol. Biol. 144 43-88, 1980.)... Figure 11.9 A diagram of the active site of chymotrypsin with a bound inhibitor, Ac-Pro-Ala-Pro-Tyr-COOH. The diagram illustrates how this inhibitor binds in relation to the catalytic triad, the strbstrate specificity pocket, the oxyanion hole and the nonspecific substrate binding region. The Inhibitor is ted. Hydrogen bonds between Inhibitor and enzyme are striped. (Adapted from M.N.G. James et al., /. Mol. Biol. 144 43-88, 1980.)...
The most recent advance in treating HIV infections has been to simultaneously attack the virus on a second front using a protease inhibitor. Recall from Section 27.10 that proteases are enzymes that catalyze the hydrolysis of proteins at specific points. When HIV uses a cell s DNA to synthesize its own proteins, the initial product is a long polypeptide that contains several different proteins joined together. To be useful, the individual proteins must be separated from the aggregate by protease-catalyzed hydrolysis of peptide bonds. Protease inhibitors prevent this hydrolysis and, in combination with reverse transcriptase inhibitors, slow the reproduction of HIV. Dramatic reductions in the viral load in HIV-infected patients have been achieved with this approach. [Pg.1180]

As we have just seen, the initial encounter complex between an enzyme and its substrate is characterized by a reversible equilibrium between the binary complex and the free forms of enzyme and substrate. Hence the binary complex is stabilized through a variety of noncovalent interactions between the substrate and enzyme molecules. Likewise the majority of pharmacologically relevant enzyme inhibitors, which we will encounter in subsequent chapters, bind to their enzyme targets through a combination of noncovalent interactions. Some of the more important of these noncovalent forces for interactions between proteins (e.g., enzymes) and ligands (e.g., substrates, cofactors, and reversible inhibitors) include electrostatic interactions, hydrogen bonds, hydrophobic forces, and van der Waals forces (Copeland, 2000). [Pg.23]

A common procedure in C-C-bond formation is the aldol addition of enolates derived from carboxylic acid derivatives with aldehydes to provide the anion of the [5-hydroxy carboxylic acid derivative. If one starts with an activated acid derivative, the formation of a [Mac lone can follow. This procedure has been used by the group of Taylor [137] for the first synthesis of the l-oxo-2-oxa-5-azaspiro[3.4]octane framework. Schick and coworkers have utilized the method for their assembly of key intermediates for the preparation of enzyme inhibitors of the tetrahydrolipstatin and tetrahydroesterastin type [138]. Romo and coworkers used a Mukaiyama aldol/lac-tonization sequence as a concise and direct route to 3-lactones of type 2-253, starting from different aldehydes 2-251 and readily available thiopyridylsilylketenes 2-252 (Scheme 2.60) [139]. [Pg.86]

The hydrazine-aldehyde reaction has been used intracellularly to deliver non-toxic drug components, which when linked to form a hydrazone bond in situ, become cytotoxic (Rideout, 1986, 1994 Rideout et al., 1990). This same approach has been used to generate enzyme inhibitors in vivo, wherein the hydrazine and aldehyde precursors are not active, but when coupled together within cells to form a hydrazone linkage, become active site binders (Rotenberg etal, 1991). [Pg.671]

Dehydroarachidonic acid analogs in which one Z-olefinic unit is replaced by a triple bond are irreversible inhibitors of the lipoxygenasses which normally deliver dioxygen to the corresponding site of arachidonic acid. The inactivation appears to be a consequence of dioxygenation at the acetylinic unit to from a vinyl hydroperoxide which undergoes rapid 0-0 homolysis. Synthetic routes to these interesting enzyme inhibitors are outlined below. [Pg.369]

The closest organic specie to the inorganic boric acid are the boronic acids generally described as R-B(OH)2. Boronic acids have been shown to act as inhibitors of the subtilisins. X-ray crystallographic studies of phenylboronic acid and phenyl-ethyl-boronic acid adducts with Subtilisin Novo have shown that they contain a covalent bond between the oxygen atom of the catalytic serine of the enzyme and the inhibitor boron atom (Matthews et al, 1975 and Lindquist Terry, 1974). The boron atom is co-ordinated tetrahedrally in the enzyme inhibitor complex. It is likely that boric acid itself interacts with the active site of the subtilisins in the same manner. [Pg.151]

There are at least three possibile ways in which the inhibitor can bind to the active site (1) formation of a sulfide bond to a cysteine residue, with elimination of hydrogen bromide [Eq. (10)], (2) formation of a thiol ester bond with a cysteine residue at the active site [Eq. (11)], and (3) formation of a salt between the carboxyl group of the inhibitor and some basic side chain of the enzyme [Eq. (12)]. To distinguish between these three possibilities, the mass numbers of the enzyme and enzyme-inhibitor complex were measured with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI). The mass number of the native AMDase was observed as 24766, which is in good agreement with the calculated value, 24734. An aqueous solution of a-bromo-phenylacetic acid was added to the enzyme solution, and the mass spectrum of the complex was measured after 10 minutes. The peak is observed at mass number 24967. If the inhibitor and the enzyme bind to form a sulfide with elimination of HBr, the mass number should be 24868, which is smaller by about one... [Pg.15]

Evaluation of intrinsic binding energy from a hydrogen bonding group in an enzyme inhibitor. Science 1987, 235, 569-571. [Pg.56]

P. Cieplak, P.A. Kollman, Peptide mimetics as enzyme inhibitors Use of free energy perturbation calculations to evaluate isosteric replacement for amide bonds in a potent HIV protease inhibitor, J. Comput. Aided Mol. Des. 7 (1993) 291-304. [Pg.732]

The presence of fluorine strongly destabihzes a carbocation centered on the jS carbon because only the inductive effect takes place. " The effect on solvolysis or protonation reaction of double bonds can be very important. The destabilization of carbenium and alkoxycarbenium ions plays an importantrole in the design of enzyme inhibitors (cf Chapter 7) and in the hydrolytic metabolism of active molecules (cf. Chapter 3). [Pg.16]

Saccharidic Difluorophosphonates Difluoromethylene phospho-nates have been the focus of numerous works. Indeed, these compounds are able to mimic the phosphate bond in the synthesis of enzyme inhibitors. This interest is obvious for the furanose series in this case, they are non scissible analogues of 5-phosphate nucleosides (cf. Chapter 7). Difluoromethylene phosphonates can be prepared via a radical path starting from compounds that have the difluoromethylene moiety in the pseudo-anomeric position. Nevertheless, methods based on metal derivatives of difluorophosphonates are generally easier and broadly applicable. [Pg.199]

Many scorpion toxins, insect defensins, and enzyme inhibitors are cystine-rich polypeptides containing three to four disulfide bonds. In a large number of these toxins, two cystines are involved in the consensus Cys-(Xaa)1-Cys/Cys-(Xaa)3-Cys framework which is responsible for the common characteristic fold consisting of an a-helix and a two- or three-stranded antiparallel (3-sheet (a 3 3-fold or 3a 3 3-fold). For a review see ref[69]. The overall compact globular structures of these cystine-rich peptides contain the cystine stabilized a-helix motif (Section 6.1.5.1.2) which is further stabilized by a third disulfide bond between the N-terminus and the (3-strand adjacent to the helix and in some cases by an additional fourth disulfide bridge. Due to the presence of the cystine stabilized a-helix motif, a preferred initial formation of this motif followed by its stabilization via the additional disulfides was expected. However, in contrast to what was observed for the cystine peptides containing only the cystine stabilized a-helix motif, simple air oxidation is not successful. [Pg.148]

Large substituents often prevent enzymatic attack on a drug, thereby prolonging its useful life. This technique was used to impart resistance to p-lactamase to the semisynthetic penicillins. The need for the proximity of the phenyl group to the lactam is quite interesting phenylbenzyl penicillin (8-26) is inactive as an enzyme inhibitor because the phenyl group no longer hinders access of the enzyme to the lactam bond. [Pg.138]


See other pages where Bonds enzyme-inhibitor is mentioned: [Pg.1180]    [Pg.451]    [Pg.319]    [Pg.25]    [Pg.345]    [Pg.1057]    [Pg.104]    [Pg.363]    [Pg.5]    [Pg.14]    [Pg.55]    [Pg.153]    [Pg.251]    [Pg.1086]    [Pg.306]    [Pg.355]    [Pg.16]    [Pg.29]    [Pg.235]    [Pg.290]    [Pg.90]    [Pg.212]    [Pg.228]    [Pg.572]    [Pg.666]    [Pg.101]    [Pg.918]    [Pg.15]    [Pg.142]    [Pg.143]    [Pg.576]    [Pg.601]    [Pg.59]   
See also in sourсe #XX -- [ Pg.105 ]




SEARCH



Covalent bonds enzyme-inhibitor

Enzyme inhibitors

Enzymes enzyme inhibitor

Hydrogen bonds enzyme inhibitors

© 2024 chempedia.info