Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bonds and Bond Order

SOME OTHER ASPECTS OF COVALENT BONDING Multiple Bonds and Bond Order [Pg.154]

Atoms of carbon, oxygen, and nitrogen bonded to each other are the most likely to form multiple bonds. In some cases, sulfur forms multiple bonds. Multiple bonds are especially abundant in the functional groups of organic compounds (Chapter 9). [Pg.154]

Each of 6 H atoms shares a pair of electrons with a C atom, and the 2 C atoms share a pair of electrons between each other in ethane, C2He. [Pg.155]


Types of Bonds and Bond Order The bond order is the number of electron pairs being shared by any pair of bonded atoms. The covalent bond in H2, HF, or F2 is a single bond, one that consists of a single bonding pair of electrons. A single bond has a bond order of 1. [Pg.278]

The most common computer representation of a chemical structure is a connection table, which contains an identification of the bonds and bond order between the atoms of the structure. Sometimes the atoms are described by only atomic number at other times hybridization is also included. Hydrogen atoms are usually not included since their presence or absence can be deduced from the other information. Thus, a complete description of two-dimensional molecular structure can be obtained from a connection table. An example of a compressed matrix connection table is shown in Figure 3. Each line describes one atom its sequence number, its atom type, and the number of each atom bonded to it with the bond orders listed in parentheses. [Pg.218]

Fournier R and Salahub D R 1990 Chemisorption and magnetization A bond order-rigid band model Surf. Sol. 238 330-40... [Pg.2234]

The systematic lUPAC nomenclature of compounds tries to characterize compounds by a unique name. The names are quite often not as compact as the trivial names, which are short and simple to memorize. In fact, the lUPAC name can be quite long and cumbersome. This is one reason why trivial names are still heavily used today. The basic aim of the lUPAC nomenclature is to describe particular parts of the structure (fi agments) in a systematic manner, with special expressions from a vocabulary of terms. Therefore, the systematic nomenclature can be, and is, used in database systems such as the Chemical Abstracts Service (see Section 5.4) as index for chemical structures. However, this notation does not directly allow the extraction of additional information about the molecule, such as bond orders or molecular weight. [Pg.21]

With such a matrix representation, the storage space is dependent only on the number of nodc.s (atoms) and independent of the number of bonds. As Figure 2-14 dcmon.stratcs, all the e.sscntial information in an adjacency matrix can also be lound in the much smaller non-rediindant matrix. But the adjacency matrix is unsuitable for reconstructing the constitution of a molecule, because it does not provide any information about the bond orders. [Pg.35]

Both the adjacency and distance matrices provide information about the connections in the molceular structure, but no additional information such as atom type or bond order. One type of matrix which includes more information, the Atom Connectivity Matrix (ACM), was introduced by Spialtcr and is discussed in Ref, [38]. This approach was eventually abandoned but is listed here because it was quite a unique approach. [Pg.36]

The bond matrix is related to the adjacency matrix but gives information also on the bond order of the connected atoms. Elements of the matrix obtain the value of 2 if there is a double bond between the atoms, c.g, between atoms 2 and 3... [Pg.36]

Adjactney matrix describes connections of atoms contains only 0 and 1 (bits) no bond types and bond orders no number of free electrons... [Pg.39]

Bond matrix describes connections and bond orders of atoms no number of free electrons cannot be rcpicscntcd by bits... [Pg.39]

Bond-eltctron matrix describes connections, bond orders, and valence electrons of the atoms cannot be represented by bits... [Pg.39]

There are many ways of presenting a connection table. One is first to label each atom of a molecule arbitrarily and to arrange them in an atom list (Figure 2-20). Then the bond information is stored in a second table with indices of the atoms that are connected by a bond. Additionally, the bond order of the corresponding coimection is stored as an integer code (1 = single bond, 2 = double bond, etc.) in the third column. [Pg.40]

Both tables, the atom and the bond lists, are linked through the atom indices. An alternative coimection table in the form of a redundant CT is shown in Figure 2-21. There, the first two columns give the index of an atom and the corresponding element symbol. The bond list is integrated into a tabular form in which the atoms are defined. Thus, the bond list extends the table behind the first two columns of the atom list. An atom can be bonded to several other atoms the atom with index 1 is connected to the atoms 2, 4, 5, and 6. These can also be written on one line. Then, a given row contains a focused atom in the atom list, followed by the indices of all the atoms to which this atom is bonded. Additionally, the bond orders are inserted directly following the atom in-... [Pg.40]

RAMSES is usually generated from molecular structures in a VB representation. The details of the connection table (localized charges, lone pairs, and bond orders) are kept within the model and are accessible for further processes. Bond orders are stored with the n-systems, while the number of free electrons is stored with the atoms. Upon modification oF a molecule (e.g., in systems dealing with reactions), the VB representation has to be generated in an adapted Form from the RAMSES notation. [Pg.69]

The most well-known and at the same time the earliest computer model for a molecular structure representation is a wire frame model (Figure 2-123a). This model is also known under other names such as line model or Drciding model [199]. It shows the individual bonds and the angles formed between these bonds. The bonds of a molecule are represented by colored vector lines and the color is derived from the atom type definition. This simple method does not display atoms, but atom positions can be derived from the end and branching points of the wire frame model. In addition, the bond orders between two atoms can be expressed by the number of lines. [Pg.132]

The optimization of the backtracking algorithm usually consists of an application of several heuristics which reduce the number of candidate atoms for mapping from Gq to Gj. These heuristics are based on local properties of the atoms such as atom types, number of bonds, bond orders, and ring membership. According to these properties the atoms in Gq and Gj are separated into different classes. This step is known in the literature as partitioning [13]. Table 6.1 illustrates the process of partitioning. [Pg.301]

Figure 10.1-3. Two regioisomeric products of the training data set and their corresponding physicochemical effects used as coding vectors bo bond order difference in tr-electro-... Figure 10.1-3. Two regioisomeric products of the training data set and their corresponding physicochemical effects used as coding vectors bo bond order difference in tr-electro-...
As with atomic charges, the bond order is not a quantum mechanical observable and so anuus methods have been proposed for calculating the bond orders in a molecule. [Pg.101]

P is the total spinless density matrix (P = P + P ) and P is the spin density matrix (P = p" + P ). For a closed-shell system Mayer s definition of the bond order reduces to ... [Pg.103]

The bond orders obtained from Mayer s formula often seem intuitively reasonable, as illustrated in Table 2.6 for some simple molecules. The method has also been used to compute the bond orders for intermediate structures in reactions of the form H -1- XH HX -1- H and X I- XH -H H (X = F, Cl, Br). The results suggested that bond orders were a useful way to describe the similarity of the transition structure to the reactants or to the products. Moreover, the bond orders were approximately conserved along the reaction pathway. [Pg.103]

The key term is which is the bond order between the atoms i and j. This parameter depends upon the number of bonds to the atom i the strength of the bond between i and j decreases as the number of bonds fo fhe atom i increases. The original bond-order potential [Abell 1985] is mathematically equivalent to the Finnis-Sinclair model if the bond order by is given by ... [Pg.263]

The Tersoff potential was designed specifically for the group 14 elements and extends the basic empirical bond-order model by including an angular term. The interaction energy between two atoms i and j using this potential is ... [Pg.263]

The function/c is a smoothing function with the value 1 up to some distance Yy (typically chosen to include just the first neighbour shell) and then smoothly tapers to zero at the cutoff distance, by is the bond-order term, which incorporates an angular term dependent upon the bond angle 6yk- The Tersoff pofenfial is more broadly applicable than the Stillinger-Weber potential, but does contain more parameters. [Pg.263]

There are a number of different ways that the molecular graph can be conununicated between the computer and the end-user. One common representation is the connection table, of which there are various flavours, but most provide information about the atoms present in the molecule and their connectivity. The most basic connection tables simply indicate the atomic number of each atom and which atoms form each bond others may include information about the atom hybridisation state and the bond order. Hydrogens may be included or they may be imphed. In addition, information about the atomic coordinates (for the standard two-dimensional chemical drawing or for the three-dimensional conformation) can be included. The connection table for acetic acid in one of the most popular formats, the Molecular Design mol format [Dalby et al. 1992], is shown in Figure 12.3. [Pg.659]

The simplest molecular orbital method to use, and the one involving the most drastic approximations and assumptions, is the Huckel method. One str ength of the Huckel method is that it provides a semiquantitative theoretical treatment of ground-state energies, bond orders, electron densities, and free valences that appeals to the pictorial sense of molecular structure and reactive affinity that most chemists use in their everyday work. Although one rarely sees Huckel calculations in the resear ch literature anymore, they introduce the reader to many of the concepts and much of the nomenclature used in more rigorous molecular orbital calculations. [Pg.172]

The total it electron energy is the sum of occupied orbital energies multiplied by two if. as is usually the ease, the orbital is doubly occupied. The charge densities and free valency indices were treated in separate sections above. The bond order output should be read as a lower triangular serni matrix. The bond order semi matrix for the butadiene output is shown in Fig. 7-7. [Pg.224]

Draw bond order and free valency index diagrams for the butadienyl system. Write a counter into program MOBAS to detemiine how many iterations are executed in solving for the allyl system. The number is not the same for all computers or operating systems. Change the convergence criterion (statement 300) to several different values and determine the number of iterations for each. [Pg.230]


See other pages where Bonds and Bond Order is mentioned: [Pg.30]    [Pg.31]    [Pg.56]    [Pg.30]    [Pg.31]    [Pg.257]    [Pg.294]    [Pg.425]    [Pg.1786]    [Pg.41]    [Pg.42]    [Pg.100]    [Pg.143]    [Pg.265]    [Pg.428]    [Pg.583]    [Pg.126]    [Pg.250]    [Pg.251]    [Pg.251]    [Pg.252]    [Pg.156]    [Pg.214]    [Pg.214]    [Pg.215]    [Pg.215]    [Pg.224]    [Pg.225]    [Pg.229]   


SEARCH



And bond order

Bond Ordering

Bond order

Bond/bonding orders

© 2024 chempedia.info