Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical dimensionality

There are many other experiments in which surface atoms have been purposely moved, removed or chemically modified with a scanning probe tip. For example, atoms on a surface have been induced to move via interaction with the large electric field associated with an STM tip [78]. A scaiming force microscope has been used to create three-dimensional nanostructures by pushing adsorbed particles with the tip [79]. In addition, the electrons that are tunnelling from an STM tip to the sample can be used as sources of electrons for stimulated desorption [80]. The tuimelling electrons have also been used to promote dissociation of adsorbed O2 molecules on metal or semiconductor surfaces [81, 82]. [Pg.311]

It is this type of work that is ubiquitous in chemical themiodynamics, principally because of changes of the volume of the system under the external pressure of the atmosphere. The negative sign of the work done on the system is, of course, because the application of excess pressure produces a decrease in volume. (The negative sign in the two-dimensional case is analogous.)... [Pg.327]

Maas U and Pope S B 1992 Simplifying chemical kinetics intrinsic low-dimensional manifolds in composition space Comb. Flame 88 239... [Pg.796]

Problems in chemical physics which involve the collision of a particle with a surface do not have rotational synnnetry that leads to partial wave expansions. Instead they have two dimensional translational symmetry for motions parallel to the surface. This leads to expansion of solutions in terms of diffraction eigenfiinctions. [Pg.970]

Time-resolved spectroscopy has become an important field from x-rays to the far-IR. Both IR and Raman spectroscopies have been adapted to time-resolved studies. There have been a large number of studies using time-resolved Raman [39], time-resolved resonance Raman [7] and higher order two-dimensional Raman spectroscopy (which can provide coupling infonuation analogous to two-dimensional NMR studies) [40]. Time-resolved IR has probed neutrals and ions in solution [41, 42], gas phase kmetics [42] and vibrational dynamics of molecules chemisorbed and physisorbed to surfaces [44]- Since vibrational frequencies are very sensitive to the chemical enviromnent, pump-probe studies with IR probe pulses allow stmctiiral changes to... [Pg.1172]

Figure Bl.22.11. Near-field scanning optical microscopy fluorescence image of oxazine molecules dispersed on a PMMA film surface. Each protuberance in this three-dimensional plot corresponds to the detection of a single molecule, the different intensities of those features being due to different orientations of the molecules. Sub-diffraction resolution, in this case on the order of a fraction of a micron, can be achieved by the near-field scaiming arrangement. Spectroscopic characterization of each molecule is also possible. (Reprinted with pennission from [82]. Copyright 1996 American Chemical Society.)... Figure Bl.22.11. Near-field scanning optical microscopy fluorescence image of oxazine molecules dispersed on a PMMA film surface. Each protuberance in this three-dimensional plot corresponds to the detection of a single molecule, the different intensities of those features being due to different orientations of the molecules. Sub-diffraction resolution, in this case on the order of a fraction of a micron, can be achieved by the near-field scaiming arrangement. Spectroscopic characterization of each molecule is also possible. (Reprinted with pennission from [82]. Copyright 1996 American Chemical Society.)...
Kuhn B, Rizzo T R, Luckhaus D, Quack M and Suhm M A 1999 A new six-dimensional analytical potential up to chemically significant energies for the electronic ground state of hydrogen peroxide J. Chem. Phys. Ill 2565-87... [Pg.2151]

It is convenient to analyse tliese rate equations from a dynamical systems point of view similar to tliat used in classical mechanics where one follows tire trajectories of particles in phase space. For tire chemical rate law (C3.6.2) tire phase space , conventionally denoted by F, is -dimensional and tire chemical concentrations, CpC2,- are taken as ortliogonal coordinates of F, ratlier tlian tire particle positions and velocities used as tire coordinates in mechanics. In analogy to classical mechanical systems, as tire concentrations evolve in time tliey will trace out a trajectory in F. Since tire velocity functions in tire system of ODEs (C3.6.2) do not depend explicitly on time, a given initial condition in F will always produce tire same trajectory. The vector R of velocity functions in (C3.6.2) defines a phase-space (or trajectory) flow and in it is often convenient to tliink of tliese ODEs as describing tire motion of a fluid in F with velocity field/ (c p). [Pg.3055]

For certain parameter values tliis chemical system can exlribit fixed point, periodic or chaotic attractors in tire tliree-dimensional concentration phase space. We consider tire parameter set... [Pg.3056]

The trajectory description problem of chemical reactions is resolved by using phase-space reconstmction from a single time series [8] this method uses delayed data at times t, t+ip t+X2,.. ., for an -dimensional attractor,... [Pg.3057]

For the strongly contracting phase volumes associated with chemical reactions, the three-dimensional continuous-... [Pg.3057]

Molecule editors represent only two-dimensional chemical structures (thus also could be considered as 2D viewers), the third dimension is visualized by 3D viewers, mainly user-interactive. [Pg.146]

P. WiUett, Three-Dimensional Chemical Structure Handling, John Wiley Sons, New York, 1991. [Pg.160]

SONNIA can be employed for the classification and clustering of objects, the projection of data from high-dimensional spaces into two-dimensional planes, the perception of similarities, the modeling and prediction of complex relationships, and the subsequent visualization of the underlying data such as chemical structures or reactions which greatly facilitates the investigation of chemical data. [Pg.461]

Large data sets such as screening data or results obtained by combinatorial experiments are made up of a large number of data records. Hence a data record may represent a chemical reaction or substance, for example its corresponding variables will define the corresponding reaction conditions or biological activities. Depending on the dimensionality or data type of the information, one-, two-, multidimensional, or specific data types can be identified. [Pg.476]

The physical, chemical cind biological properties of a molecule often depend critically upo the three-dimensional structures, or conformations, that it can adopt. Conformational analysi is the study of the conformations of a molecule and their influence on its properties. Th development of modem conformational analysis is often attributed to D H R Bcirton, wh showed in 1950 that the reactivity of substituted cyclohexanes wcis influenced by th equatoricil or axial nature of the substituents [Beirton 1950]. An equcilly important reaso for the development of conformatiorml analysis at that time Wcis the introduction c analytic il techniques such as infreired spectroscopy, NMR and X-ray crystaillograph] which actucilly enabled the conformation to be determined. [Pg.473]

I J, J C Cole, J P M Lommerse, R S Rowland, R Taylor and M L Verdonk 1997. Isostar A Libraij )f Information about Nonbonded Interactions. Journal of Computer-Aided Molecular Design 11 525-531. g G, W C Guida and W C Still 1989. An Internal Coordinate Monte Carlo Method for Searching lonformational Space. Journal of the American Chemical Scociety 111 4379-4386. leld C and A J Collins 1980. Introduction to Multivariate Analysis. London, Chapman Hall, ig C-W, R M Cooke, A E I Proudfoot and T N C Wells 1995. The Three-dimensional Structure of 1 ANTES. Biochemistry 34 9307-9314. [Pg.522]

There are a number of different ways that the molecular graph can be conununicated between the computer and the end-user. One common representation is the connection table, of which there are various flavours, but most provide information about the atoms present in the molecule and their connectivity. The most basic connection tables simply indicate the atomic number of each atom and which atoms form each bond others may include information about the atom hybridisation state and the bond order. Hydrogens may be included or they may be imphed. In addition, information about the atomic coordinates (for the standard two-dimensional chemical drawing or for the three-dimensional conformation) can be included. The connection table for acetic acid in one of the most popular formats, the Molecular Design mol format [Dalby et al. 1992], is shown in Figure 12.3. [Pg.659]

Most of the molecules we shall be interested in are polyatomic. In polyatomic molecules, each atom is held in place by one or more chemical bonds. Each chemical bond may be modeled as a harmonic oscillator in a space defined by its potential energy as a function of the degree of stretching or compression of the bond along its axis (Fig. 4-3). The potential energy function V = kx j2 from Eq. (4-8), or W = ki/2) ri — riof in temis of internal coordinates, is a parabola open upward in the V vs. r plane, where r replaces x as the extension of the rth chemical bond. The force constant ki and the equilibrium bond distance riQ, unique to each chemical bond, are typical force field parameters. Because there are many bonds, the potential energy-bond axis space is a many-dimensional space. [Pg.97]

P. Willett, Three-Dimensional Chemical Structure Handling Research Studies Press, Baldock (1991). [Pg.72]

Chem3D can read a wide variety of popular chemical structure files, including Gaussian, MacroModel, MDL, MOPAC, PDB, and SYBYL. Two-dimensional structures imported from ChemDraw or ISIS/Draw are automatically converted to three-dimensional structures. The Chem3D native file format contains both the molecular structure and results of computations. Data can be exported in a variety of chemical-structure formats and graphics files. [Pg.324]


See other pages where Chemical dimensionality is mentioned: [Pg.754]    [Pg.870]    [Pg.1355]    [Pg.1508]    [Pg.1623]    [Pg.2096]    [Pg.2108]    [Pg.2111]    [Pg.2115]    [Pg.2144]    [Pg.2390]    [Pg.2396]    [Pg.2586]    [Pg.2780]    [Pg.3057]    [Pg.3069]    [Pg.477]    [Pg.91]    [Pg.91]    [Pg.105]    [Pg.124]    [Pg.475]    [Pg.505]    [Pg.658]    [Pg.663]    [Pg.664]    [Pg.702]    [Pg.8]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Bonds, chemical three-dimensional

Chemical space representations dimensionality

Chemical waves three-dimensional

Dimensionality, compartmentalized systems chemical reaction efficiency

One- and two-dimensional metal oxide nanostructures for chemical sensing

Representation of Two-Dimensional Chemical Structures

Searching Files of Two-Dimensional Chemical Structures

Three-Dimensional Atmospheric Chemical Transport Models

Three-dimensional chemical representation

Three-dimensional chemical structures

Tools for Searching Two-Dimensional Chemical Structures of Small Molecules

Two-dimensional chemical exchange

Two-dimensional chemical exchange spectroscopy

Two-dimensional chemical structures

© 2024 chempedia.info