Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bond formation with Heck reaction

Palladium-catalysed C-C bond formation under Heck reaction conditions, which normally requires anhydrous conditions and the presence of copper(I) salts, is aided by the addition of quaternary ammonium salts. It has been shown that it is frequently possible to dispense with the copper catalyst and use standard two-phase reactions conditions [e.g. 18, 19]. Tetra-/i-butylammonium salts catalyse the palladium-catalysed reaction of iodoarenes with alkynes to yield the arylethynes in high yield [20, 21], whereas the reaction with 3-methylbut-1 -yn-3-ol (Scheme 6.30) provides a route to diarylethynes [22]. Diarylethynes are also formed from the reaction of an iodoarene with trimethylsilylethyne [23], Iodoalkynes react with a,p-unsaturated ketones and esters to produce the conjugated yne-eneones [19],... [Pg.290]

In addition to these methods, carbon-heteroatom bond formation can also be coupled with these Heck cyclizations. One of the more straightforward methods to couple carbon-heteroatom bond formation with Heck cyclization is via enamine generation. For example, the reaction of enolizable aldehydes or ketones with 2-haloanilines provides a route to the construction of enamines for subsequent Heck cyclization. A recent example of this reaction was reported by Nazare, who demonstrated that ortho-chloroanilines can react with enolizable ketones to generate indoles (Scheme 6.54) [74]. This chemistry proceeds in good yields with a diverse variety of symmetrical and unsymmetrical ketones, provided there is only one enamine isomer, and can be applied to a range of substituted indoles. Zhu has demonstrated that enolizable aldehydes can be used in the cyclization [75]. This latter approach can provide a very effective method to selectively incorporate a range of alkyl, aryl or functionalized units into the 3-indole position, many of which are not easily accessible via other routes. [Pg.183]

Carbon—carbon bond formation with radicals 992 The Heck reaction couples together an organic ... [Pg.1252]

Tris-m-sulfonatophenylphosphine (tppts) plays an important role in the history of homogeneous catalysis [39], mainly due to its use in the Ruhrchemie/Rhone-Poulenc hydroformylation process [40], now operated by Celanese (see 1.2 and Chapter 7). It is also used in a number of fine chemical processes, such as selective hydrogenation with ruthenium [41], carbon-carbon bond formation with rhodium [42], and the Heck reaction [43]. Monosidfonated triphenylphosphine (tppms) is used for the preparation ofnonadienol [44] (see Figure 5). [Pg.7]

In the presence of soluble complexes of metals such as Ni and Pd, alkenyl halides undergo carbon-carbon bond formation with alkenes to produce dienes. In this process, called the Heck reaction, a molecule of hydrogen halide is liberated. [Pg.561]

In addition to the cross-coupling reactions of alkyl halides or sulfonates with organometallic nucleophiles, the former can also directly undergo C-C bond formation with nonactivated C-H bonds of alkenes or arenes in a Heck-type reaction. Iron-catalyzed intramolecular dehydrohalogenation of 2-iodoethanal alkenyl acetals with phenyl-magnesium bromide in the presence of a catalytic amount of iron(II) chloride provides tetrahydrofliran derivatives in moderate yields (Scheme 4-240). Allyl 2-halophenyl ethers provide dihydrobenzofiiran derivatives under these conditions. ... [Pg.696]

The Heck reaction is considered to be the best method for carbon-carbon bond formation by substitution of an olefinic proton. In general, yields are good to very good. Sterically demanding substituents, however, may reduce the reactivity of the alkene. Polar solvents, such as methanol, acetonitrile, N,N-dimethylformamide or hexamethylphosphoric triamide, are often used. Reaction temperatures range from 50 to 160 °C. There are various other important palladium-catalyzed reactions known where organopalladium complexes are employed however, these reactions must not be confused with the Heck reaction. [Pg.158]

In aqueous DMF, the reaction can be applied to the formation of C-C bonds in a solid-phase synthesis with resin-bound iodobenzoates (Eq. 6.33).80 The reaction proceeds smoothly and leads to moderate to high yield of product under mild conditions. The optimal conditions involve the use of 9 1 mixture of DMF-water. Parsons investigated the viability of the aqueous Heck reactions under superheated conditions.81 A series of aromatic halides were coupled with styrenes under these conditions. The reaction proceeded to approximately the same degree at 400°C as at 260°C. Some 1,2-substituted alkanes can be used as alkene equivalents for the high-temperature Heck-type reaction in water.82... [Pg.186]

Having established that the inherent selectivity of the Heck reaction would not readily allow us to access aldehyde products related to the Wieland-Gumlich aldehyde, we considered a number of other possible reaction manifolds for C20-C15 bond formation. Each substrate was accessed by deallylation of cycloadduct 104 followed by alkylation with the appropriate allylic or propargylic halide. Inspired by the extensive studies of Bonjoch, Bosch, Sole, and co-workers,... [Pg.89]

Reaction of organic halides with alkenes catalyzed by palladium compounds (Heck-type reaction) is known to be a useful method for carbon-carbon bond formation at unsubstituted vinyl positions. The first report on the application of microwave methodology to this type of reaction was published by Hallberg et al. in 1996 [86], Recently, the palladium catalyzed Heck coupling reaction induced by microwave irradiation was reported under solventless liquid-liquid phase-transfer catalytic conditions in the presence of potassium carbonate and a small amount of [Pd(PPh3)2Cl2]-TBAB as a catalyst [87]. The arylation of alkenes with aryl iodides proceeded smoothly to afford exclusively trans product in high yields (86-93%) (Eq. 61). [Pg.176]

Metal-catalyzed cross-couplings are key transformations for carbon-carbon bond formation. The applicability of continuous-flow systems to this important reaction type has been shown by a Heck reaction carried out in a stainless steel microreactor system (Snyder et al. 2005). A solution of phenyliodide 5 and ethyl acrylate 6 was passed through a solid-phase cartridge reactor loaded with 10% palladium on charcoal (Scheme 2). The process was conducted with a residence time of 30 min at 130°C, giving the desired ethyl cinnamate 7 in 95% isolated yield. The batch process resulted in 100% conversion after 30 min at 140°C using a preconditioned catalyst. [Pg.10]

Palladium-catalyzed arylation of olefins and the analogous alkenylation (Heck reaction) are the useful synthetic methods for carbon-carbon bond formation.60 Although these reactions have been known for over 20 years, it was only in 1989 that the asymmetric Heck reaction was pioneered in independent work by Sato et al.60d and Carpenter et al.61 These scientists demonstrated that intramolecular cyclization of an alkenyl iodide or triflate yielded chiral cyclic compounds with approximately 45% ee. The first example of the intermolecular asymmetric Heck reaction was reported by Ozawa et al.60c Under appropriate conditions, the major product was obtained in over 96% ee for a variety of aryl triflates.62... [Pg.471]

The formation of carbon-carbon bonds by palladium-promoted reactions has been widely used in organic synthesis [114-116]. A major advantage is that most of these coupling reactions can be performed with catalytic amounts of palladium. Palladium(II)-catalyzed reactions, e.g., the Wacker process, are distinguished from palladium(O)-catalyzed reactions, e.g., the Heck reaction, since they require oxidative regeneration of the catalytically active palladium(II) species in a separate step [117]. Several groups have applied palladium-mediated and -catalyzed coupling reactions to the construction of the carbazole framework. [Pg.135]

C-C bond formation using the Heck reaction allows the introduction of functional groups to obtain new organic structures on solid supports. This reaction between an alkene with an alkenyl or an aryl halide has been widely employed in various in-tra- and inter-molecular versions on solid-phase because of the readily accessibility of starting materials. The Heck reaction was performed on immobilized aryl or alkenyl halides with soluble alkenes and vice versa (Scheme 3.11). [Pg.166]

Other successful examples of catalysts containing NHC ligands are found in palladium- and nickel-catalyzed carbon-carbon bond formations. The catalyst development with these metals has focused in particular on Heck-type reactions, especially the Mizoroki-Heck reaction itself [Eq. (42)] and various cross coupling reactions [Eq. (43)], e.g., the Suzuki-Miyaura reaction ([M] = and the Kumada-Corriu reaction ([M] = MgBr). " Related reactions like the Sonogashira coupling [Eq. (44)]326-329 Buchwald-... [Pg.42]


See other pages where Bond formation with Heck reaction is mentioned: [Pg.119]    [Pg.300]    [Pg.561]    [Pg.349]    [Pg.547]    [Pg.135]    [Pg.1126]    [Pg.345]    [Pg.101]    [Pg.601]    [Pg.1126]    [Pg.102]    [Pg.650]    [Pg.455]    [Pg.559]    [Pg.607]    [Pg.576]    [Pg.156]    [Pg.217]    [Pg.233]    [Pg.236]    [Pg.716]    [Pg.1329]    [Pg.362]    [Pg.398]    [Pg.164]    [Pg.381]    [Pg.450]    [Pg.460]    [Pg.52]    [Pg.122]    [Pg.53]   
See also in sourсe #XX -- [ Pg.1024 , Pg.1025 ]




SEARCH



Bond-formation reactions

Formate reaction with

© 2024 chempedia.info