Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biomimetic forms

Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra this issue will be expanded later in the Chapter. And since most heteromacrocycles have unique shape and form, Ozin s Accounts article entitled Morphogenesis of Biomineral and Morphosynthesis of Biomimetic Forms adds a macroscopic dimension to macrocyclic chemistry <97ACR17>. [Pg.336]

In 2010, a technical report of lUPAC upgrades the definition of electrochemical biosensors introducing the concept of nucleic acid (NA)-based biosensor [3]. In this context, an electrochemical NA-based biosensor is a device that integrates an NA (natural and biomimetic forms of oUgo- and polynucleotides) as the biological... [Pg.136]

A corollary to 6 to be thought of as an entity, a concept must have a name and an identity. We must be prepared to build new mathematical images and procedures in biomimetic form. [Pg.52]

The tetramerization of suitable monopyrroles is one of the simplest and most effective approaches to prepare porphyrins (see Section 1.1.1.1.). This approach, which is best carried out with a-(hydroxymethyl)- or ot-(aminomethyl)pyrroles, can be designated as a biomimetic synthesis because nature also uses the x-(aminomethyl)pyrrole porphobilinogen to produce uroporphyrinogen III. the key intermediate in the biosynthesis of all kinds of naturally occurring porphyrins, hydroporphyrins and corrins. The only restriction of this tetramerization method is the fact that tnonopyrroles with different -substituents form a mixture of four constitutionally isomeric porphyrins named as porphyrins I, II, III, and IV. In the porphyrin biosynthesis starting from porphobilinogen, which has an acetic acid and a propionic acid side chain in the y6-positions, this tetramerization is enzymatically controlled so that only the type III constitutional isomer is formed. [Pg.697]

It is probable that the negative charge induced by these three electrons on FeMoco is compensated by protonation to form metal hydrides. In model hydride complexes two hydride ions can readily form an 17-bonded H2 molecule that becomes labilized on addition of the third proton and can then dissociate, leaving a site at which N2 can bind (104). This biomimetic chemistry satisfyingly rationalizes the observed obligatory evolution of one H2 molecule for every N2 molecule reduced by the enzyme, and also the observation that H2 is a competitive inhibitor of N2 reduction by the enzyme. The bound N2 molecule could then be further reduced by a further series of electron and proton additions as shown in Fig. 9. The chemistry of such transformations has been extensively studied with model complexes (15, 105). [Pg.185]

FIG. 14 Schematic illustration of an archaeal cell envelope structure (a) composed of the cytoplasmic membrane with associated and integral membrane proteins and an S-layer lattice, integrated into the cytoplasmic membrane, (b) Using this supramolecular construction principle, biomimetic membranes can be generated. The cytoplasmic membrane is replaced by a phospholipid or tetraether hpid monolayer, and bacterial S-layer proteins are crystallized to form a coherent lattice on the lipid film. Subsequently, integral model membrane proteins can be reconstituted in the composite S-layer-supported lipid membrane. (Modified from Ref. 124.)... [Pg.363]

A biomolecular system of glycoproteins derived from bacterial cell envelopes that spontaneously aggregates to form crystalline arrays in the mesoscopic range is reviewed in Chapter 9. The structure and features of these S-layers that can be applied in biotechnology, membrane biomimetics, sensors, and vaccine development are discussed. [Pg.690]

In recent years, several model complexes have been synthesized and studied to understand the properties of these complexes, for example, the influence of S- or N-ligands or NO-releasing abilities [119]. It is not always easy to determine the electronic character of the NO-ligands in nitrosyliron complexes thus, forms of NO [120], neutral NO, or NO [121] have been postulated depending on each complex. Similarly, it is difficult to determine the oxidation state of Fe therefore, these complexes are categorized in the Enemark-Feltham notation [122], where the number of rf-electrons of Fe is indicated. In studies on the nitrosylation pathway of thiolate complexes, Liaw et al. could show that the nitrosylation of complexes [Fe(SR)4] (R = Ph, Et) led to the formation of air- and light-sensitive mono-nitrosyl complexes [Fe(NO)(SR)3] in which tetrathiolate iron(+3) complexes were reduced to Fe(+2) under formation of (SR)2. Further nitrosylation by NO yields the dinitrosyl complexes [(SR)2Fe(NO)2], while nitrosylation by NO forms the neutral complex [Fe(NO)2(SR)2] and subsequently Roussin s red ester [Fe2(p-SR)2(NO)4] under reductive elimination forming (SR)2. Thus, nitrosylation of biomimetic oxidized- and reduced-form rubredoxin was mimicked [121]. Lip-pard et al. showed that dinuclear Fe-clusters are susceptible to disassembly in the presence of NO [123]. [Pg.209]

One-step hydroxylation of aromatic nucleus with nitrous oxide (N2O) is among recently discovered organic reactions. A high eflSciency of FeZSM-5 zeolites in this reaction relates to a pronounced biomimetic-type activity of iron complexes stabilized in ZSM-5 matrix. N2O decomposition on these complexes produces particular atomic oj gen form (a-oxygen), whose chemistry is similar to that performed by the active oxygen of enzyme monooxygenases. Room temperature oxidation reactions of a-oxygen as well as the data on the kinetic isotope effect and Moessbauer spectroscopy show FeZSM-5 zeolite to be a successfiil biomimetic model. [Pg.493]

Results discussed above show in several lines a distinct biomimetic-type activity of iron complexes stabilized in the ZSM-S matrix. The most important feature is their unique ability to coordinate a very reactive a-oxygen form which is similar to the active oxygen species of MMO. At room temperature a-oxygen provides various oxidation reactions including selective hydroxylation of methane to methanol. Like in biological oxidation, the rate determining step of this reaction involves the cleavage of C-H bond. [Pg.501]

Another elegant example of the thermal generation and subsequent intramolecular cycloaddition of an o-QM can be found in Snider s biomimetic synthesis of the tetracyclic core of bisabosquals.2 Treatment of the starting material with acid causes the MOM ethers to cleave from the phenol core (Fig. 4.3). Under thermal conditions, a proton transfer ensues from one of the phenols to its neighboring benzylic alcohol residue. Upon expulsion of water, an o-QM forms. The E or Z geometry of the o-QM intermediate and its propensity toward interception by formaldehyde, water, or itself, again prove inconsequential as the outcome is decided by the relative thermodynamic stabilities among accessible products. [Pg.91]

When discussing seco alkaloids the question of their genesis should not be disregarded. Are they true alkaloids or artifacts of isolation It is difficult to answer this question with certainty. Some of them, e.g., secophthalide-isoquinoline ene lactams, are postulated to be formed during the extraction process however, most of them are believed to be metabolites produced naturally. This may be evidenced by the fact that some of these alkaloids retain optical activity, and in addition many of them can be synthesized in biomimetic syntheses in the laboratory. Thus, one can generalize the opinion of Shamma (10), whose significant contribution to the field of secoisoquinoline alkaloids should be acknowledged, that [a process]. .. could presumably occur in vivo at least as readily as it could in vitro. ... [Pg.232]

Macrocyclic complexes of zinc have inspired interest in varied areas such as supramolecular and biomimetic chemistry including hydrolysis enzymes, such as phosphatases and esterases, and also for the fluorescent detection of zinc. The polyaza macrocycles and their A--functionalized derivatives are particularly well represented. An important aspect of macrocycle synthesis is the use of metal templates to form the ligand. Examples of zinc as a template ion will be discussed where relevant. [Pg.1204]

The isolation of calycanthine (9) in 1888 by Eccles [28] and the subsequent proposition for its origins in the oxidative dimerization of tryptamine by Woodward [29] and Robinson [30] had prompted several key synthetic studies based on a biomimetic approach. Hendrickson was the first to experimentally verify the plausibility of forming the C3-C3 linked dimers through an oxidative radical dimerization strategy (Scheme 9.2a). He demonstrated that the sodium enolate of a tryptamine-derived oxindole could be oxidized with iodine to afford a mixture of three possible stereoisomers. The racemic product was isolated in 13 % yield, while the meso product was isolated in 8 % yield. Global reduction of the oxindole and carbamates afforded the first synthetic samples of chimonanthine (7) [9a],... [Pg.217]

As mentioned earlier, biological systems have developed optimized strategies to design materials with elaborate nanostructures [6]. A straightforward approach to obtaining nanoparticles with controlled size and organization should therefore rely on so-called biomimetic syntheses where one aims to reproduce in vitro the natural processes of biomineralization. In this context, a first possibility is to extract and analyze the biological (macro)-molecules that are involved in these processes and to use them as templates for the formation of the same materials. Such an approach has been widely developed for calcium carbonate biomimetic synthesis [13]. In the case of oxide nanomaterials, the most studied system so far is the silica shell formed by diatoms [14]. [Pg.160]

However, it has to be realized that biological templates remain inserted in the final nanoparticles and this is not acceptable for many applications. Nevertheless, some recent examples indicate that such biomimetic materials may be suitable for the design of biotechnological and medical devices [32]. For instance, it was shown that silica gels formed in the presence of p-R5 were excellent host matrices for enzyme encapsulation [33]. In parallel, biopolymer/silica hybrid macro-, micro- and nanocapsules were recently obtained via biomimetic routes and these exhibit promising properties for the design of drug delivery materials (see Section 3.1.1) [34,35],... [Pg.163]


See other pages where Biomimetic forms is mentioned: [Pg.365]    [Pg.125]    [Pg.278]    [Pg.290]    [Pg.6]    [Pg.365]    [Pg.125]    [Pg.278]    [Pg.290]    [Pg.6]    [Pg.202]    [Pg.18]    [Pg.2]    [Pg.641]    [Pg.257]    [Pg.272]    [Pg.1]    [Pg.137]    [Pg.345]    [Pg.362]    [Pg.391]    [Pg.142]    [Pg.155]    [Pg.155]    [Pg.341]    [Pg.659]    [Pg.659]    [Pg.679]    [Pg.390]    [Pg.61]    [Pg.444]    [Pg.1165]    [Pg.34]    [Pg.46]    [Pg.187]    [Pg.1]    [Pg.41]    [Pg.159]    [Pg.360]   
See also in sourсe #XX -- [ Pg.336 ]




SEARCH



© 2024 chempedia.info