Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bioavailability calculation

It should be readily apparent that the trapezoidal rule does not measure AUC exactly. However, it is accurate enough for most bioavailability calculations, and the segments are chosen on the basis of the time intervals at which plasma was collected. [Pg.95]

Preclinical studies across species noted that bioavailabilities calculated from tissue-derived data were consistently higher than plasma-derived bioavailabilities. This difference varied across tissues, but in general amounted to about a two-fold difference between plasma and tissue bioavailability (Fig. 10.4). While the tissue... [Pg.260]

Absolute bioavailability (calculate using Equation (8.28)). The bigger the absolute bioavailability the greater the chance of a favourable biological action. [Pg.268]

In general, AUC calculations are not often used for IV infusion (zero-order absorption) unless the value is being compared to extravascular drug delivery for bioavailability calculations. [Pg.252]

For carotenoids, the type of matrix varies from relatively simple matrices in which the free carotenoid is dissolved in oil or encapsulated in supplements to more complex matrices in which the carotenoid is within plant foods. It is clear that the efficiency of the process by which the compound becomes more accessible in the gastrointestinal tract is inversely related to the degree of complexity of the food matrix. Carotenoid bioavailability is indeed far greater in oil or from supplements than from foods and usually the pure carotenoid solubilized in oil or in water-soluble beadlets is employed as a reference to calculate the relative bioavailability of the carotenoid from other foods. ... [Pg.158]

From an analysis of the key properties of compounds in the World Dmg Index the now well accepted Rule-of-5 has been derived [25, 26]. It was concluded that compounds are most Hkely to have poor absorption when MW>500, calculated octanol-water partition coefficient Clog P>5, number of H-bond donors >5 and number of H-bond acceptors >10. Computation of these properties is now available as a simple but efficient ADME screen in commercial software. The Rule-of-5 should be seen as a qualitative absorption/permeabiHty predictor [43], rather than a quantitative predictor [140]. The Rule-of-5 is not predictive for bioavail-abihty as sometimes mistakenly is assumed. An important factor for bioavailabihty in addition to absorption is liver first-pass effect (metaboHsm). The property distribution in drug-related chemical databases has been studied as another approach to understand drug-likeness [141, 142]. [Pg.41]

Investigation of the differences in crystal packing between (431) and (426) from comparison of their respective X-ray structures, revealed that (431) was more tightly packed than (442), reflected in their respective melting points of 235 and 170 °C. It was postulated that the absence of in vivo activity for (431) may be explained by the resultant reduction in water solubility and dissolution rate compared with (426). The comparatively high calculated polar surface area of (431) (122.5A ) compared with (426) (89.3 A ) was also proposed as a factor influencing the marked difference in bioavailability between the two related compounds. Compound (426) (SLV-319) is currently being developed with Bristol-Myers Squibb for the potential treatment of obesity and other metabolic disorders. Phase I trials for obesity were started in April 2004. Earlier Phase I clinical trials for the treatment of schizophrenia and psychosis, which commenced in April 2002, appear to have been abandoned. [Pg.285]

The ionizability of compounds affects other parameters such as solubility, permeability, and ultimately oral bioavailability, so it may be important to track changes in the pka of new compounds. Calculated pka values can be used when planning the synthesis of new compounds, but it is also a good idea to confirm these values experimentally. An example where this strategy can be useful is in the search for bioisosteric replacements for a carboxylic acid group. [Pg.186]

Thus, if it is assumed that the same fraction of absorbed drug always reaches the urine unchanged, the bioavailability can be calculated as the ratio of total amounts of unchanged drug recovered in urine. [Pg.96]

For this calculation, it is unnecessary to assume that Vd and/or kei are the same for the two studies. It is only necessary that fe be the same in both studies. This is usually a valid assumption unless the drug undergoes a significant amount of first-pass metabolism in the gut wall or liver following oral administration or a significant amount of decomposition at an intra muscular (IM) injection site. When this occurs, the availability of the extravascular dosage form may appear to be low, but the fault will not lie with the formulation. The bioavailability will be a true reflection of the therapeutic efficacy of the drug product, and reformulation may not increase bioavailability. [Pg.96]

Instead of using the oral bioavailability of a drug, one can attempt to correlate PM values with permeability coefficients generated from in situ perfused intestinal preparations. Here, one eliminates the complexities of liver metabolism, clearance, and formulation variables. Recently, this type of in vitro-in situ correlation has been conducted using the model peptides (described previously in Section V.B.2). The permeabilities of these model peptides were determined using a perfused rat intestinal preparation which involved cannulation of the mesenteric vein (Kim et al., 1993). With this preparation, it was possible to measure both the disappearance of the peptides from the intestinal perfusate and the appearance of the peptides in the mesenteric vein. Thus, clearance values (CLapp) could be calculated for each peptide. Knowing the effective surface area of the perfused rat ileum, the CLapp values could be converted to permeability coefficients (P). When the permeability coefficients of the model peptides were plotted as a function of the lipophilicity of the peptides, as measured by partition coefficients in octanol-water, a poor correlation (r2 = 0.02) was observed. A better correlation was observed between the permeabilities of these peptides and the number of potential hydrogen bonds the peptide can make with water (r2 = 0.56,... [Pg.326]

The use of hepatic portal vein-cannulated animals can be helpful in determining specific causes of poor bioavailability. After oral dosing, the total bioavailability of a compound is normally calculated as ... [Pg.143]

A., Comparison of methods to calculate cyclosporine A bioavailability from consecutive oral and intravenous doses,/. Pharmacokinet. Biopharm. [Pg.152]

The genesis of in silico oral bioavailability predictions can be traced back to Lip-inski s Rule of Five and others qualitative attempts to describe drug-like molecules [13-15]. These processes are useful primarily as a qualitative tool in the early stage library design and in the candidate selection. Despite its large number of falsepositive results, Lipinski s Rule of Five has come into wide use as a qualitative tool to help the chemist design bioavailable compounds. It was concluded that compounds are most likely to have poor absorption when the molecular weight is >500, the calculated octan-l-ol/water partition coefficient (c log P) is >5, the number of H-bond donors is >5, and the number of H-bond acceptors is >10. Computation of these properties is now available as an ADME (absorption, distribution, metabolism, excretion) screen in commercial software such as Tsar (from Accelrys). The rule-of-5 should be seen as a qualitative, rather than quantitative, predictor of absorption and permeability [16, 17]. [Pg.450]

For compounds not metabolized by the gut wall, liver, or affected by transporters, a direct relationship between oral absorption and bioavailability should be observed. The calculated oral absorption, using PSA as a measure for passive membrane permeability reflecting the absorption step, relates to the in vivo observed bioavailability for three classes of compounds - angiotensin-converting enzymes (ACE) inhibitors, P-blockers, and calcium antagonists - is shown below [25],... [Pg.453]

In the first example, the predicted oral absorption for a series of ACE inhibitors has been compared with published values of human bioavailability. For the generation of calculated absorption, a sigmoidal curve between observed human absorption and PSA for a series of reference compounds was used [25], The predicted oral absorption for ACE inhibitors is plotted against the calculated PSA values is shown in Fig. 19.6 however, as expected, only a partial correlation existed between predicted absorption and observed in vivo bioavailability. [Pg.453]

Fig. 19.8. Prediction of human bioavailability from calculated human absorption using polar surface area (PSA) for a series of calcium antagonists [25],... Fig. 19.8. Prediction of human bioavailability from calculated human absorption using polar surface area (PSA) for a series of calcium antagonists [25],...
Daneshmend [104] measured the serum concentration of miconazole in 11 healthy adult females for 72 h following a single 1200 mg vaginal pessary. The mean peak serum miconazole concentration was 10.4 pg/L and the mean elimination half-life was 56.8 h. The mean area under the serum concentration-time curve was 967 pg/L/h. The calculated mean systemic bioavailability of the vaginal pessary was 1.4%. There was large intersubject variation in serum miconazole pharmacokinetics. This formulation may provide effective single dose treatment for vaginal candidiasis. [Pg.58]


See other pages where Bioavailability calculation is mentioned: [Pg.40]    [Pg.236]    [Pg.238]    [Pg.259]    [Pg.263]    [Pg.774]    [Pg.794]    [Pg.367]    [Pg.131]    [Pg.40]    [Pg.236]    [Pg.238]    [Pg.259]    [Pg.263]    [Pg.774]    [Pg.794]    [Pg.367]    [Pg.131]    [Pg.169]    [Pg.485]    [Pg.117]    [Pg.118]    [Pg.444]    [Pg.448]    [Pg.94]    [Pg.133]    [Pg.416]    [Pg.234]    [Pg.124]    [Pg.318]    [Pg.348]    [Pg.445]    [Pg.453]    [Pg.593]    [Pg.263]    [Pg.180]    [Pg.891]    [Pg.145]   
See also in sourсe #XX -- [ Pg.264 ]




SEARCH



Bioavailability calculation methods

© 2024 chempedia.info