Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

BINOL/titanium derived catalysts

The relatively weaker Lewis acidic titanium complexes require the use of a stronger nucleophile than allylsilanes, and tributylallyltin (6.81) is the most common aUylating agent employed when using titanium-based catalyst systems. In 1993, Umani-Ronchi and Keck published related results using BINOL/titanium derived catalysts. In the Umani-Ronchi system, BINOL is employed, in combination with TiCl2 (0 Pr)2 and shown to work weU with aliphatic... [Pg.161]

Mikami and co-workers16-19 have done extensive work for developing catalysts for the asymmetric carbonyl-ene reaction. Excellent enantioselectivites are accessible with the binol-titanium catalyst 17 (Equation (10)) for the condensation of 2-methyl butadiene (R1 = vinyl) and glyoxalates (binol = l,T-binaphthalene-2,2 -diol).16 The products were further manipulated toward the total synthesis of (i )-(-)-ipsdienol. The oxo-titanium species 18 also provides excellent enantioselectivity in the coupling of a-methyl styrene with methyl glyoxalate.17 Reasonable yields and good enantioselectivites are also obtained when the catalyst 19 is formed in situ from titanium isopropoxide and the binol and biphenol derivatives.18... [Pg.561]

Titanium complexes involving a chiral auxiliary derived from BINOL, are good catalysts for the glyoxylate ene-reaction (see example in Scheme 6). With these species very high (-l-)-NLEs have been observed [18,33,34,35]. [Pg.117]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

The addition of trimethylsilyl (TMS) cyanide to aldehydes produces TMS-protected cyanohydrins. In a recent investigation a titanium salen-type catalyst has been employed to catalyse trimethylsilylcyanide addition to benzaldehyde at ambient temperature1118]. Several other protocols have been published which also lead to optically active products. One of the more successful has been described by Abiko et al. employing a yttrium complex derived from the chiral 1,3-diketone (41)[119] as the catalyst, while Shibasaki has used BINOL, modified so as to incorporate Lewis base units adjacent to the phenol moieties, as the chiral complexing agent11201. [Pg.29]

Mikami et al. reported the first examples of catalytic asymmetric intramolecular carbonyl-ene reactions of types (3,4) and (2,4), using the BINOL-derived titanium complex (1) [46,49], The catalytic 7-(2,4) carbonyl-ene cyclization gives the corresponding oxepane with high enantiopurity, and the gem-dimethyl groups are not required (Scheme 8C.I8). In a similar catalytic 6-(3,4) ene cyclization, tran.v-tetrahydropyran is preferentially obtained with high enantiopurity (Scheme 8C. 19), The sense of asymmetric induction is the same as that observed for the glyoxylate-ene reaction, that is, (R)-BINOL-Ti catalyst provides (R)-alcohol. Therefore, the... [Pg.557]

BINOL-derived titanium complex was found to serve as an efficient catalyst for the Mukaiyama-type aldol reaction of ketone silyl enol ethers with good control of both absolute and relative stereochemistry (Scheme 8C.24) [57]. It is surprising, however, that the aldol products were obtained in the silyl enol ether (ene product) form, with high syn-diastereoselec-tivity from either geometrical isomer of the starting silyl enol ethers. [Pg.562]

A Et2Zn-(5, S)-linked-BINOL (21) complex has been found suitable for chemos-elective enolate formation from a hydroxy ketone in the presence of isomerizable aliphatic iV-diphenylphosphinoylimines.103 The reaction proceeded smoothly and /9- alkyl-yS-amino-a-hydroxy ketones were obtained in good yield and high enantioselectivity (up to 99% ee). A titanium complex derived from 3-(3,5-diphenylphenyl)-BINOL (22) has exhibited an enhanced catalytic activity in the asymmetric alkylation of aldehydes, allowing the reduction of the catalyst amount to less than 1 mol% without deterioration in enantioselectivity.104... [Pg.294]

The vast majority of successful chiral catalysts to date are based on tartaric acid, BINOL, or oxazolidinone derivatives (Table 26.1). Because derivatives of both of these compounds are commercially available, scale up should not present a problem. If the observed asymmetric induction is found to be low with catalysts based on tartaric acid or oxazolidinones, the sterically hindered titanium BINAP-type complexes should allow for increased selectivity. In addition, nontoxic metal counterions, such as iron and aluminum, do not appear to compromise the asymmetric induction. [Pg.507]

Mikami et al. studied the Diels-Alder reaction between a-methylstyrene and n-butyl glyoxylate catalyzed by a titanium binolate catalyst.76-78 Addition of 0.5 equivalents of (Zf)-BINOL to 1 equivalent of the racemic catalyst accelerated the reaction and gave the product with 89.8% ee (Scheme 20). Enantiopure catalyst derived solely from (/ )-BINOL gave the product with 94.5% ee. Here the amplification originates from the creation of a new chiral complex 9 of higher efficiency (rate and enantioselectivity) with respect to each enantiomer of the original racemic catalyst. [Pg.289]

Mukaiyama Aldol Condensation. The BINOL-derived titanium complex BINOL-T1CI2 is an efficient catalyst for the Mukaiyama-type aldol reaction. Not only ketone silyl enol ether (eq 25), but also ketene silyl acetals (eq 26) can be used to give the aldol-type products with control of absolute and relative stereochemistry. [Pg.89]

Mukaiyama Aldol Condensation. As expected, the chiral titanium complex is also effective for a variety of carbon-carbon bond forming processes such as the aldol and the Diels-Alder reactions. The aldol process constitutes one of the most fundamental bond constructions in organic synthesis. Therefore the development of chiral catalysts that promote asymmetic aldol reactions in a highly stereocontrolled and truly catalytic fashion has attracted much attention, for which the silyl enol ethers of ketones or esters have been used as a storable enolate component (Mukaiyama aldol condensation). The BINOL-derived titanium complex BINOL-TiCl2 can be used as an efficient catalyst for the Mukaiyama-ty pe aldol reaction of not only ketone si ly 1 enol ethers but also ester silyl enol ethers with control of absolute and relative stereochemistry (eq 11). ... [Pg.93]

Carreira employed a chiral BINOL-derived Schiff base-titanium complex as a catalyst for aldol reactions with acetate-derived ketene silyl acetals (Sch. 38) [100]. The catalyst was prepared in toluene in the presence of salicylic acid, which was reported to be crucial to achieving high enantioselectivity. A similar Schiff base-titanium complex is also applicable to the carbonyl-ene type reaction with 2-methoxypropene (Sch. 39) [101]. Although conducting the reaction in toluene or ether solution provided no addition product, excellent chemical yield and enantioselectivity were attained by the use of 2-methoxypropene as a solvent. [Pg.822]

Keck also investigated asymmetric catalysis with a BINOL-derived titanium complex [102,103] for the Mukaiyama aldol reaction. The reaction of a-benzyloxyalde-hyde with Danishefsky s dienes as functionalized silyl enol ethers gave aldol products instead of hetero Diels-Alder cycloadducts (Sch. 40) [103], The aldol product can be transformed into hetero Diels-Alder type adducts by acid-catalyzed cyclization. The catalyst was prepared from BINOL and Ti(OPr )4, in 1 1 or 2 1 stoichiometry, and oven-dried MS 4A, in ether under reflux. They reported the catalyst to be of BINOL-Ti(OPr% structure. [Pg.823]

Narasaka has demonstrated that TADDOL-Ti dichloride prepared from TADDOL and Cl2Ti(OPr )2 in the presence of MS 4A acts as an efficient catalyst in asymmetric catalytic Diels-Alder reactions with oxazolidinone derivatives of acrylates, a results in extremely high enantioselectivity (Sch. 45) [112]. Narasaka reported an intramolecular version of the Diels-Alder reaction, the product of which can be transformed into key intermediates for the syntheses of dihydrocompactin and dihydromevinolin (Sch. 46) [113]. Seebach and Chapuis/Jurczak [114] independently reported asymmetric Diels-Alder reactions promoted by chiral TADDOL- and 3,3 -diphenyl BINOL-derived titanium alkoxides. Other types of chiral diol ligands were also explored by Hermann [115] and Oh [116]. [Pg.826]

The TADDOL-derived titanium catalyst has also been used for inverse electron-demand Diels-Alder reactions [124-127], although Posner favored the use of a BINOL-derived titanium catalyst in his inverse electron-demand Diels-Alder reactions for the synthesis of la,25(OH)2D3 (Sch. 47) [125,126]. [Pg.827]

Interestingly, the chiral titanium complex derived from 6-Br-BINOL affords higher cis selectivity, enantioselectivity, and catalytic activity than the parent BINOL-Ti catalyst in the hetero Diels-Alder reactions of 1-methoxydienes with glyoxylate, but not with bromoacrolein (Sch. 49) [130]. [Pg.829]

The Diels-Alder reaction of methacrolein with 1,3-dienol derivatives can also be catalyzed by the BINOL-derived titanium complex, although the catalyst must be freed from molecular sieves (MS) to give the endo adduct with high enantioselectivity (Sch. 50) [131], because MS act as achiral catalysts in the Diels-Alder reaction. The asymmetric Diels-Alder reaction catalyzed by the MS-free (MS-(-)) BINOL-Ti complex (L) can be applied naphthoquinone derivatives as dienophiles to provide entry to the asymmetric synthesis of tetra- and anthracyclinone [132] aglycones (Sch. 51). The sense of asymmetric induction is exactly the same as that observed in the presence of MS in the asymmetric catalytic reactions described above. [Pg.829]

As shown above, asymmetric catalysis of Diels-Alder reactions has been achieved by use of chiral titanium complexes bearing chiral diol ligands. Yamamoto has reported a chiral helical titanium complex derived from Ti(OPr )4 and a BINOL-derived tetraol ligand (Sch. 54) [134], The Diels-Alder products are obtained with uniformly high enantioselectivity, irrespective of the substituent pattern of a,/3-unsaturated aldehydes. Corey has also reported a new type of chiral titanium complex derived from an amino alcohol ligand (Sch. 55) [135]. The chiral titanium complex serves as an efficient asymmetric catalyst for the reaction of 2-bromoacrolein the Diels-Alder product is obtained with high enantioselectivity. [Pg.832]

Oguni has reported asymmetric amplification [12] ((-i-)-NLE) in an asymmetric carbonyl addition reaction of dialkylzinc reagents catalyzed by chiral ami-noalcohols such as l-piperidino-3,3-dimethyl-2-butanol (PDB) (Eq. (7.1)) [13]. Noyori et al. have reported a highly efficient aminoalcohol catalyst, 2S)-3-exo-(dimethylamino)isobomeol (DAIB) [14] and a beautiful investigation of asymmetric amplification in view of the stability and lower catalytic activity of the het-ero-chiral dimer of the zinc aminoalcohol catalyst than the homo-chiral dimer (Fig. 7-5). We have reported a positive non-linear effect in a carbonyl-ene reaction [15] with glyoxylate catalyzed by binaphthol (binol)-derived chiral titanium complex (Eq. (7.2)) [10]. Bolm has also reported (-i-)-NLE in the 1,4-addition reaction of dialkylzinc by the catalysis of nickel complex with pyridyl alcohols [16]. [Pg.187]

Keck has reported that binol-derived titanium catalyst prepared in the presence or absence of MS 4A showed a (+)-NLE or a linearity, respectively [23],... [Pg.192]

Other use of the functionalized chiral BINOL includes the 5,5, 6,6, 7, 7, 8,8 -octahydro derivative developed by Chan and coworkers, the titanium complex of which is more effective than BINOL in the enantioselective addition of triethylaluminum and diethylzinc a 4,4, 6,6 -tetrakis(perfluorooctyl) BINOL ligand developed for easy separation of the product and catalyst using fluorous solvents for the same zinc reaction an aluminum complex of 6,6 -disubstituted-2,2 -biphenyldiols used by Harada and coworkers in the asymmetric Diels-Alder reaction a titanium complex of (5 )-5,5, 6,6, 7,7, 8,8 -octafluoro BINOL employed by Yudin and coworkers in the diethylzinc addition, in the presence of which the reaction of the enantiomeric (/f)-BINOL is promoted . [Pg.697]

A bimetallic titanium complex of BINOL derivative can be used to catalyze the asymmetric carbonyl-ene reaction [46]. Insoluble polymeric catalyst 74 was prepared from a self-assembly of Ti(OiPr)4 and non-crosshnked copolymers with (R)-binaphthol pendant groups (Scheme 3.22) [47]. The self-assembled polymeric Ti complex is insoluble in organic solvent and catalyzed the carbonyl-ene reaction of glyoxylate 75 and a-methylstyrene 76. When the reaction of 75 and 76 was carried out with 20mol% of 74 in Gl pCf at room temperature, an 85% yield of the product with 88% ee was obtained. Following its recovery by filtration, this catalyst was reused five times with full retenhon of its activity and enantioselectivity, without further treatment... [Pg.87]

Heterobimetallic binol catalyst based on titanium, aluminum, and scandium have also been reported.40 The results showed that the titanium catalyst was not effective. While the aluminum catalyst was better, it turned out that the scandium derivative was the most efficient. [Pg.492]

Tridentate BINOL catalysts can be derived from titanium tetra(isopropoxide), BINOL ligands, and hindered amine bases. These catalysts have also been shown to provide good yields and ee s for the aldol reactions at low temperatures of 2-methoxypropene with several aldehydes to the P-hydroxyketones, but an acid workup of the products is required. [Pg.307]


See other pages where BINOL/titanium derived catalysts is mentioned: [Pg.236]    [Pg.604]    [Pg.148]    [Pg.369]    [Pg.247]    [Pg.306]    [Pg.327]    [Pg.212]    [Pg.686]    [Pg.34]    [Pg.372]    [Pg.44]    [Pg.113]    [Pg.275]    [Pg.803]    [Pg.212]    [Pg.217]    [Pg.274]    [Pg.25]    [Pg.208]   
See also in sourсe #XX -- [ Pg.161 ]




SEARCH



BINOL

BINOL catalysts

BINOL-derived

Catalysts titanium

Titanium BINOLates

Titanium-Binol catalyst

© 2024 chempedia.info