Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bile salt absorption

BJ Aungst, NJ Rogers, E Shefter. (1988). Comparison of nasal, rectal, buccal, sublingual, and intramuscular insulin efficacy and the effects of a bile salt absorption promoter. J Pharmacol Exp Therap 244 23-27. [Pg.386]

Different small intestinal sites of absorption for different micellar constituents have also been an argument for uptake of monomers instead of micelles. Whereas the major part of the lipolytic products are absorbed in the proximal part of jejunum, the site of bile salt uptake has been said to be the distal ileum. Recent investigations of the quantitative role of different parts of the small intestine for bile salt absorption suggest that the role of the distal ileum has been overestimated. Sklan et al. [73] found that about 50% of bile salts of endogenous origin were absorbed in the proximal half of the rat small intestine in vivo. A similar investigation was performed by McCUntock and Shiau [74], who injected a bolus dose of bile salts into the jejunum of rats with a bile fistula. They found that 60% of taurocholate was absorbed before the bolus reached distal ileum. [Pg.416]

Saunders, DJI., and SUlery, J. (1976) Lecithin Inhibits Fatty Acid and Bile Salt Absorption from Rat Small Intestine in Vivo, Lipids 11,83(U832. [Pg.73]

Bde salts, cholesterol, phosphoHpids, and other minor components are secreted by the Hver. Bile salts serve three significant physiological functions. The hydrophilic carboxylate group, which is attached via an alkyl chain to the hydrophobic steroid skeleton, allows the bile salts to form water-soluble micelles with cholesterol and phosphoHpids in the bile. These micelles assist in the solvation of cholesterol. By solvating cholesterol, bile salts contribute to the homeostatic regulation of the amount of cholesterol in the whole body. Bile salts are also necessary for the intestinal absorption of dietary fats and fat-soluble vitamins (24—26). [Pg.415]

Although products of fat digestion, including cholesterol, are absorbed in the first 100 cm of small intestine, the primary and secondary bile acids are absorbed almost exclusively in the ileum, and 98—99% are returned to the liver via the portal circulation. This is known as the enterohepatic circulation (Figure 26—6). However, lithocholic acid, because of its insolubility, is not reabsorbed to any significant extent. Only a small fraction of the bile salts escapes absorption and is therefore eliminated in the feces. Nonetheless, this represents a major pathway for the elimination of cholesterol. Each day the small pool of bile acids (about 3-5 g) is cycled through the intestine six to ten times and an amount of bile acid equivalent to that lost in the feces is synthesized from cholesterol, so that a pool of bile acids of constant size is maintained. This is accomplished by a system of feedback controls. [Pg.227]

Irrespective of the physical form of the carotenoid in the plant tissue it needs to be dissolved directly into the bulk lipid phase (emulsion) and then into the mixed micelles formed from the emulsion droplets by the action of lipases and bile. Alternatively it can dissolve directly into the mixed micelles. The micelles then diffuse through the unstirred water layer covering the brush border of the enterocytes and dissociate, and the components are then absorbed. Although lipid absorption at this point is essentially complete, bile salts and sterols (cholesterol) may not be fully absorbed and are not wholly recovered more distally, some being lost into the large intestine. It is not known whether carotenoids incorporated into mixed micelles are fully or only partially absorbed. [Pg.118]

Highly insoluble molecules are in part transported in the GIT by partitioning into the mixed micelles injected into the lumen from the biliary duct in the duodenum (Fig. 2.3). Mixed micelles consist of a 4 1 mixture of bile salts and phospholipids (Fig. 7.13). In contrast, at the point of absorption in the BBB, highly insoluble molecules are transported by serum proteins. This distinction is expected to be important in in vitro assay modeling. The use of simulated intestinal fluids is appealing. [Pg.237]

Penetration enhancers are low molecular weight compounds that can increase the absorption of poorly absorbed hydrophilic drugs such as peptides and proteins from the nasal, buccal, oral, rectal, and vaginal routes of administration [186], Chelators, bile salts, surfactants, and fatty acids are some examples of penetration enhancers that have been widely tested [186], The precise mechanisms by which these enhancers increase drug penetration are largely unknown. Bile salts, for instance, have been shown to increase the transport of lipophilic cholesterol [187] as well as the pore size of the epithelium [188], indicating enhancement in both transcellular and paracellular transport. Bile salts are known to break down mucus [189], form micelles [190], extract membrane proteins [191], and chelate ions [192], While breakdown of mucus, formation of micelles, and lipid extraction may have contributed predominantly to the bile salt-induced enhancement of transcellular transport, chelation of ions possibly accounts for their effect on the paracellular pathway. In addition to their lack of specificity in enhancing mem-... [Pg.364]

Nevertheless, there are reports on enhancement of ocular drug absorption by bile salts [33], surfactants [200], and chelators [149], Newton et al. [35] demonstrated that Azone, an enhancer widely tested in transdermal drug delivery [201], increased the ocular absorption of cyclosporine, an immunosuppressant, by a factor of 3, thereby prolonging the survival of a corneal allograft. In 1986, Lee et al. [34] reported that 10 pg/mL cytochalasin B, an agent capable of condensing the actin microfilaments, increased the aqueous humor and iris-ciliary body concentrations of topically applied inulin (5 kDa) by about 70% and 700%, respectively, in the albino rabbit. [Pg.365]

Morimoto et al. [33] demonstrated that the ocular absorption of hydrophilic compounds over a wide range of molecular weights could be increased by 2 and 10 mM sodium taurocholate and sodium taurodeoxycholate in a dose-dependent manner. The compounds were glutathione (307 Da), 6-carboxyfluorescein (376 Da), FTTC-dextran (4 kDa), and insulin (5.7 kDa). Of the two bile salts, sodium taurodeoxycholate was more effective. At 10 mM, this bile salt increased the permeability of 6-carboxyfluorescein from 0.02% to 11%, glutathione from 0.08% to 6%, FITC-dextran from 0% to 0.07%, and insulin from 0.06% to 3.8%. Sodium taurocholate, on the other hand, increased the permeability to 0.13%, 0.38%, 0.0011%, and 0.14%, respectively. Taurodeoxycholate was more effective than taurocholate in the nasal epithelium as well [202], This difference in activities can possibly be attributed to their micelle-forming capability, which is higher for taurodeoxycholate, a dihydroxy bile salt [190],... [Pg.365]

Conjunctival insulin absorption in rabbits estimated as plasma insulin levels after punctal occlusion was also shown to be increased by bile salts (sodium deoxycholate, glycocholate, and taurocholate) and a surfactant (polyoxyethylene-9-lauryl ether) [200], Their rank order of effectiveness at 1% was sodium deoxycholate > polyoxyethylene-9-lauryl ether > sodium glycocholate = sodium taurocholate. There was an 18-, 29-, 3-, and 3-fold increase, respectively, in conjunctival absorption. Sodium deoxycholate, a dihydroxy bile salt, was more effec-... [Pg.365]

T Murakami, Y Sasaki, R Yamajo, N Yata. (1984). Effect of bile salt on the rectal absorption of sodium ampicillin in rats. Chem Pharm Bull 32 1948-1955. [Pg.385]

GSMJE Duchateau, J Zuidema, FWHM Merkus. (1986). Bile salts and intranasal drug absorption. Int J Pharm 31 193-199. [Pg.386]

Bile is produced continuously by the liver bile salts are secreted by the hepatocytes and the water, sodium bicarbonate, and other inorganic salts are added by the cells of the bile ducts within the liver. The bile is then transported by way of the common bile duct to the duodenum. Bile facilitates fat digestion and absorption throughout the length of the small intestine. In the terminal region of the ileum, the final segment of the small intestine, the bile salts are actively reabsorbed into the blood, returned to the liver by way of the hepatic portal system, and resecreted into the bile. This recycling of the bile salts from the small intestine back to the liver is referred to as enterohepatic circulation. [Pg.297]


See other pages where Bile salt absorption is mentioned: [Pg.275]    [Pg.457]    [Pg.2677]    [Pg.2648]    [Pg.416]    [Pg.47]    [Pg.351]    [Pg.139]    [Pg.275]    [Pg.457]    [Pg.2677]    [Pg.2648]    [Pg.416]    [Pg.47]    [Pg.351]    [Pg.139]    [Pg.603]    [Pg.256]    [Pg.475]    [Pg.119]    [Pg.211]    [Pg.159]    [Pg.1512]    [Pg.1512]    [Pg.1517]    [Pg.51]    [Pg.55]    [Pg.537]    [Pg.50]    [Pg.164]    [Pg.407]    [Pg.371]    [Pg.296]    [Pg.302]    [Pg.205]    [Pg.208]    [Pg.210]    [Pg.265]   
See also in sourсe #XX -- [ Pg.304 , Pg.416 , Pg.417 ]




SEARCH



Absorption enhancers bile salts

Bile salts

Passive Absorption of Bile Salts in the Lower Gastrointestinal Tract

Salt absorption

© 2024 chempedia.info