Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzylic of toluene

Friedel-Crafts reactions involving electrophilic substitution of aromatic compounds have been reported on solid base catalysts such as thallium oxide and MgO. The rates of benzylation of toluene by benzyl chloride over MgO nanocrystals were found to be of the order CP-MgO > CM-MgO > AP-MgO.56 An important observation in the study was that x-ray diffraction of the spent catalyst... [Pg.53]

Benzylation of toluene with benzyl chloride, which is a typical example of Friedel-Crafts alkylation, is known to be catalyzed by Lewis-type superacids such as A1C13 and BF3. This type of catalyst has been mostly used for the Friedel-Crafts reaction, which is one of the most studied of organic reactions. This reaction was performed over several metal oxides and sulfates, and iron sulfates showed an unexpected effectiveness for the reaction (102-104). The catalytic activities of FeS04 and Fe2(S04)3 for the reaction were examined in detail the activities were remarkably dependent on calcination temperature, the maximum activity being observed with calcination at 700°C (105-107). Catalytic actions analogous to the above case were also observed with other Friedel-Crafts reactions, the benzoyl-ation of toluene with benzoyl chloride (108), the isopropylation of toluene with isopropyl halides (109), and the polycondensation of benzyl chloride UIO). [Pg.177]

The regioselectivity of the benzylation of toluene shifts from ksubpara > ksub ortho >... [Pg.193]

Scheme 5.23 Effect of the molar ratio of reactants on selectivity in the Friedel-Crafts benzylation of toluene with benzyl alcohol. Scheme 5.23 Effect of the molar ratio of reactants on selectivity in the Friedel-Crafts benzylation of toluene with benzyl alcohol.
It is prepared by the direct chlorination of toluene in the presence of PClj. It is purified by fractionation from the unchanged toluene and the higher chlorinated products. It is used for benzylating amines and for preparing benzyl alcohol. [Pg.57]

In the following preparation, the oxidation of benzyl chloride instead of toluene is therefore given in order to reduce the time required. It should be borne in mind, however, that the procedure is othenvise independent of the nature of the side chain. [Pg.239]

Method 2. In a 500-ml. rovmd-bottomed flask, fitted with an efficient reflux condenser, place 92 g, (106 ml.) of toluene, 68 g. (41 ml.) of redistilled sulphuryl cldoride and 1 g, of dibenzoyl peroxide (Section IV,196). Reflux gently, when a vigorous reaction takes place the reaction is complete in 30 minutes. Isolate the benzyl chloride as described in Method 1. The yield is 50 g. [Pg.539]

In the second, a trace of toluene (possibly formed by hydrolysis) is metalated by the p-tolyl-sodium to give benzyl-sodium and toluene. Since the toluene is regenerated in the reaction, a small quantity would be adequate as a sort of catalyst. [Pg.933]

Ingold and his co-workers used the competitive method in their experiments, in which nitration was brought about in acetic anhydride. Typically, the reaction solutions in these experiments contained o-8-I 4 mol of nitric acid, and the reaction time, depending on the reactivities of the compounds and the temperature, was 0-5-10 h. Results were obtained for the reactivities of toluene, > ethyl benzoate, the halogenobenzenes, ethyl phenyl acetate and benzyl chloride. Some of these and some later results are summarized in table 5.2. Results for the halogenobenzenes and nitrobiphenyls are discussed later ( 9.1.4, lo.i), and those for a series of benzylic compounds in 5,3.4. [Pg.82]

The comparative ease with which a benzylic hydrogen is abstracted leads to high selectivity m free radical halogenations of alkylbenzenes Thus chlorination of toluene... [Pg.441]

These reactions occur on the benzylic hydrogens because these hydrogens are much more reactive. Competition experiments show, for example, that at 40°C a benzylic hydrogen of toluene is 3.3 times as reactive toward bromine atoms as the tertiary hydrogen of an alkane and nearly 100 million times as reactive as a hydrogen of methane. [Pg.176]

Benzyl Chloride. Benzyl chloride is manufactured by high temperature free-radical chlorination of toluene. The yield of benzyl chloride is maximized by use of excess toluene in the feed. More than half of the benzyl chloride produced is converted by butyl benzyl phthalate by reaction with monosodium butyl phthalate. The remainder is hydrolyzed to benzyl alcohol, which is converted to ahphatic esters for use in soaps, perfume, and davors. Benzyl salicylate is used as a sunscreen in lotions and creams. By-product benzal chloride can be converted to benzaldehyde, which is also produced directiy by oxidation of toluene and as a by-product during formation of benzoic acid. By-product ben zotrichl oride is not hydrolyzed to make benzoic acid but is allowed to react with benzoic acid to yield benzoyl chloride. [Pg.191]

The only industrially important processes for the manufacturing of synthetic benzaldehyde involve the hydrolysis of benzal chloride [98-87-3] and the air oxidation of toluene. The hydrolysis of benzal chloride, which is produced by the side-chain chlorination of toluene, is the older of the two processes. It is no longer utilized ia the United States. Other processes, including the oxidation of benzyl alcohol, the reduction of benzoyl chloride, and the reaction of carbon monoxide and benzene, have been utilized ia the past, but they no longer have any iadustrial appHcation. [Pg.34]

In the past benzal and benzyl chlorides were co-produced for the manufacture of benzaldehyde and benzyl alcohol, but today the vast majority of the benzaldehyde produced from benzal chloride is that which is made from recovered (by-product) material. For an historical article regarding the chlorination of toluene and the subsequent production of benzaldehyde, benzyl alcohol, and benzoic acid, see reference 4. [Pg.34]

In the future it may be possible to oxidize toluene microbiaHy to produce benzyl alcohol. Treatment of toluene in the presence of air with a culture of Af. thermophila in a phosphate buffer is reported to yield a mixture of benzaldehyde, benzyl alcohol, and -cresol [106-44-5] (3). [Pg.60]

Continuous chlorination of benzene at 30—50°C in the presence of a Lewis acid typically yields 85% monochlorobenzene. Temperatures in the range of 150—190°C favor production of the dichlorobenzene products. The para isomer is produced in a ratio of 2—3 to 1 of the ortho isomer. Other methods of aromatic ring chlorination include use of a mixture of hydrogen chloride and air in the presence of a copper—salt catalyst, or sulfuryl chloride in the presence of aluminum chloride at ambient temperatures. Free-radical chlorination of toluene successively yields benzyl chloride, benzal chloride, and benzotrichloride. Related chlorination agents include sulfuryl chloride, tert-huty hypochlorite, and /V-ch1orosuccinimide which yield benzyl chloride under the influence of light, heat, or radical initiators. [Pg.510]

Benzyl chloride is manufactured by the thermal or photochemical chlorination of toluene at 65—100°C (37). At lower temperatures the amount of ring-chlorinated by-products is increased. The chlorination is usually carried to no more than about 50% toluene conversion in order to minimize the amount of benzal chloride formed. Overall yield based on toluene is more than 90%. Various materials, including phosphoms pentachloride, have been reported to catalyze the side-chain chlorination. These compounds and others such as amides also reduce ring chlorination by complexing metallic impurities (38). [Pg.59]

Under typical Hquid-phase chlorination conditions the maximum conversion to benzyl chloride of about 70% is reached after reaction of about 1.1 moles of chlorine per mole of toluene (39). Higher yields of benzyl chloride have been claimed 80% for low temperature chlorination (40) 80—85% for light-catalyzed chlorination in the vapor phase (41) and 93.6% for continuous chlorination above 125°C in a column packed with glass rings (42). [Pg.59]

Benzotrichloride is produced from total side-chain chlorination of toluene or of residual products from benzyl chloride production. In Western Europe, Bayer has the largest capacity (14,000 t/yr), and there are only two significant producers in the United States Occidental Chemical in Niagara EaUs, New York (20,000 t/yr), and Velsicol Chemical (11,000 t/yr). Total capacity in the western world is 68,000 t/yr and production of benzotrichloride in 1988 was estimated at 31,500 t. [Pg.60]

From this value and known C—H bond dissociation energies, pK values can be calculated. Early application of these methods gave estimates of the p/Ts of toluene and propene of about 45 and 48, respectively. Methane was estimated to have a pAT in the range of 52-62. Electrochemical measurements in DMF have given the results shown in Table 7.3. These measurements put the pK of methane at about 48, with benzylic and allylic stabilization leading to values of 39 and 38 for toluene and propene, respectively. The electrochemical values overlap with the pATdmso scale for compounds such as diphenyl-methane and triphenylmethane. [Pg.410]

The benzylic position in alkylbenzenes is analogous to the allylic position in alkenes. Thus a benzylic C—H bond, like an allylic one, is weaker than a C—H bond of an alkane, as the bond dissociation energies of toluene, propene, and 2-rnethylpropane attest ... [Pg.439]

The chlorination of toluene by substituting the methyl hydrogens is a free radical reaction. A mixture of three chlorides (benzyl chloride, ben-zal chloride and benzotrichloride) results. [Pg.291]

Draw resonance structures for the benzyl radical, C6H5CH2-, the intermediate produced in the NBS bromination reaction of toluene (Problem 10.27). [Pg.356]


See other pages where Benzylic of toluene is mentioned: [Pg.283]    [Pg.259]    [Pg.259]    [Pg.185]    [Pg.193]    [Pg.692]    [Pg.259]    [Pg.316]    [Pg.92]    [Pg.266]    [Pg.283]    [Pg.259]    [Pg.259]    [Pg.185]    [Pg.193]    [Pg.692]    [Pg.259]    [Pg.316]    [Pg.92]    [Pg.266]    [Pg.338]    [Pg.538]    [Pg.203]    [Pg.240]    [Pg.241]    [Pg.242]    [Pg.174]    [Pg.932]    [Pg.903]    [Pg.254]    [Pg.119]    [Pg.119]    [Pg.136]    [Pg.103]   
See also in sourсe #XX -- [ Pg.522 ]




SEARCH



Benzyl chloride (chlorination of toluene)

Benzyl toluene

Preparation of Benzyl Chloride from Toluene

Toluene benzylation

© 2024 chempedia.info