Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzylic halides, nucleophilic substitution

Before we discuss specific nucleophiles, leaving groups, and transformations, we should be clear about what this type of reaction will not do. Substituents attached to sp or sp carbon atoms cannot be substituted in this way. S l is precluded by the instability of sp or sp cations. 5 2 is impossible because backside attack is inhibited by the n-system. Thus, in Figure 9.29, only the allylic or benzylic halides are substituted. This is not to say that replacement of vinyl or aryl halides is impossible—simply that it does not happen in the same way, or under the same conditions (see Sections 13.4 and 23.6.3), as substitution at sp carbon atoms. [Pg.336]

Benzylic halides that are secondary resemble secondary alkyl halides in that they undergo substitution only when the nucleophile is weakly basic If the nucleophile is a strong base such as sodium ethoxide elimination by the E2 mechanism is faster than substitution... [Pg.445]

A mechanism of this type permits substitution of certain aromatic and ahphatic nitro compounds by a variety of nucleophiles. These reactions were discovered as the result of efforts to explain the mechanistic basis for high-yield carbon alkylation of the 2-nitropropane anion by p-nitrobenzyl chloride. p-Nitrobenzyl bromide and iodide and benzyl halides that do not contain a nitro substituent give mainly the unstable oxygen alkylation product with this ambident anion ... [Pg.727]

Nucleophilic substitution of the halogen atom of halogenomethylisoxazoles proceeds readily this reaction does not differ essentially from that of benzyl halides. One should note the successful hydrolysis of 4-chloromethyl- and 4-(chlorobenzyl)-isoxazoles by freshly precipitated lead oxide, a reagent seldom used in organic chemistry. Other halides, ethers, and esters of the isoxazole series have been obtained from 3- and 4-halogenomethylisoxazoles, and 3-chloro-methylisoxazole has been reported in the Arbuzov rearrangement. Panizzi has used dichloromethylisoxazole derivatives to synthesize isoxazole-3- and isoxazole-5-aldehydes/ ... [Pg.393]

Alkyl halides can be hydrolyzed to alcohols. Hydroxide ion is usually required, except that especially active substrates such as allylic or benzylic types can be hydrolyzed by water. Ordinary halides can also be hydrolyzed by water, if the solvent is HMPA or A-methyl-2-pyrrolidinone." In contrast to most nucleophilic substitutions at saturated carbons, this reaction can be performed on tertiary substrates without significant interference from elimination side reactions. Tertiary alkyl a-halocarbonyl compounds can be converted to the corresponding alcohol with silver oxide in aqueous acetonitrile." The reaction is not frequently used for synthetic purposes, because alkyl halides are usually obtained from alcohols. [Pg.463]

The method is quite useful for particularly active alkyl halides such as allylic, benzylic, and propargylic halides, and for a-halo ethers and esters, but is not very serviceable for ordinary primary and secondary halides. Tertiary halides do not give the reaction at all since, with respect to the halide, this is nucleophilic substitution and elimination predominates. The reaction can also be applied to activated aryl halides (such as 2,4-dinitrochlorobenzene see Chapter 13), to epoxides, " and to activated alkenes such as acrylonitrile. The latter is a Michael type reaction (p. 976) with respect to the alkene. [Pg.787]

The oxygen nucleophiles that are of primary interest in synthesis are the hydroxide ion (or water), alkoxide ions, and carboxylate anions, which lead, respectively, to alcohols, ethers, and esters. Since each of these nucleophiles can also act as a base, reaction conditions are selected to favor substitution over elimination. Usually, a given alcohol is more easily obtained than the corresponding halide so the halide-to-alcohol transformation is not used extensively for synthesis. The hydrolysis of benzyl halides to the corresponding alcohols proceeds in good yield. This can be a useful synthetic transformation because benzyl halides are available either by side chain halogenation or by the chloromethylation reaction (Section 11.1.3). [Pg.226]

The application of phase-transfer catalysis to the Williamson synthesis of ethers has been exploited widely and is far superior to any classical method for the synthesis of aliphatic ethers. Probably the first example of the use of a quaternary ammonium salt to promote a nucleophilic substitution reaction is the formation of a benzyl ether using a stoichiometric amount of tetraethylammonium hydroxide [1]. Starks mentions the potential value of the quaternary ammonium catalyst for Williamson synthesis of ethers [2] and its versatility in the synthesis of methyl ethers and other alkyl ethers was soon established [3-5]. The procedure has considerable advantages over the classical Williamson synthesis both in reaction time and yields and is certainly more convenient than the use of diazomethane for the preparation of methyl ethers. Under liquidrliquid two-phase conditions, tertiary and secondary alcohols react less readily than do primary alcohols, and secondary alkyl halides tend to be ineffective. However, reactions which one might expect to be sterically inhibited are successful under phase-transfer catalytic conditions [e.g. 6]. Microwave irradiation and solidrliquid phase-transfer catalytic conditions reduce reaction times considerably [7]. [Pg.69]

The possibility that substitution results from halogen-atom transfer to the nucleophile, thus generating an alkyl radical that could then couple with its reduced or oxidized form, has been mentioned earlier in the reaction of iron(i) and iron(o) porphyrins with aliphatic halides. This mechanism has been extensively investigated in two cases, namely the oxidative addition of various aliphatic and benzylic halides to cobalt(n) and chromiumfn) complexes. [Pg.115]

You have read (Unit 10, Class Xll) that the carbon - halogen bond In alkyl or benzyl haUdes can be easily cleaved by a nucleophile. Hence, an allqrl or ben l haUde on reaction with an ethanollc solution of ammonia undergoes nucleophilic substitution reaction m which the halogen atom Is replaced by an amino (-NHJ group. This process of cleavage of the C-X bond by ammonia molecule Is known as ammonolysis. The reaction Is carried out In a sealed tube at 373 K. The primary amine thus obtained behaves as a nucleophile and can further react with allqrl halide to form secondary and tertiary amines, and finally quaternary ammonium salt. [Pg.115]

Tertiary benzylic nitriles are useful synthetic intermediates, and have been used for the preparation of amidines, lactones, primary amines, pyridines, aldehydes, carboxylic acids, and esters. The general synthetic pathway to this class of compounds relies on the displacement of an activated benzylic alcohol or benzylic halide with a cyanide source followed by double alkylation under basic conditions. For instance, 2-(2-methoxyphenyl)-2-methylpropionitrile has been prepared by methylation of (2-methoxyphenyl)acetonitrile using sodium amide and iodomethane. In the course of the preparation of a drug candidate, the submitters discovered that the nucleophilic aromatic substitution of aryl fluorides with the anion of a secondary nitrile is an effective method for the preparation of these compounds. The reaction was studied using isobutyronitrile and 2-fluoroanisole. The submitters first showed that KHMDS was the superior base for the process when carried out in either THF or toluene (Table I). For example, they found that the preparation of 2-(2-methoxyphenyl)-2-methylpropionitrile could be accomplished h... [Pg.253]

Nucleophilic substitution, aliphatic, 31, 45, 77-100 Ag catalysis, 97 allyl halides, 85 ambident nucleophiles, 97 benzyl halides, 84, 91 bridgehead halides, 86 bromomethane, 78 2-bromopropanoate, 94 1-bromotriptycene, 87 carbanions in, 100,288... [Pg.211]

Alkyl halides with an electron-withdrawing group on the halogen-bearing carbon can be dimerized to olefins by treatment with bases. Z may be nitro, aryl, etc. It is likely that in most cases the mechanism451 involves nucleophilic substitution followed by elimination452 (illustrated for benzyl chloride) ... [Pg.1203]

Illustrative examples of cleavage reactions of /V-arylbenzylaminc derivatives are listed in Table 3.25. Aromatic amines can be immobilized as /V-bcnzylanilincs by reductive amination of resin-bound aldehydes or by nucleophilic substitution of resin-bound benzyl halides (Chapter 10). The attachment of the amino group of 5-aminoin-doles to 2-chlorotrityl chloride resin has been reported [486]. Anilines have also been linked to resin-bound dihydropyran as aminals [487]. [Pg.93]

Phenols can be etherified with resin-bound benzyl alcohols by the Mitsunobu reaction [554,555], or, alternatively, by nucleophilic substitution of resin-bound benzyl halides or sulfonates [556,557], Both reactions proceed smoothly under mild conditions. Aliphatic alcohols have been etherified with Wang resin by conversion of the latter into a trichloroacetimidate (C13CCN/DCM/DBU (15 100 1), 0°C, 40 min), fol-... [Pg.102]

Aliphatic alcohols do not undergo solvolysis as readily as benzylic alcohols, and are generally converted into halides under basic reaction conditions via an intermediate sulfonate. Because of the hydrophobicity of polystyrene, however, nucleophilic substitutions with halides on this support do not always proceed as readily as in solution (Table 6.3). Alternatively, phosphorus-based reagents can also be used to convert aliphatic alcohols into halides. [Pg.208]


See other pages where Benzylic halides, nucleophilic substitution is mentioned: [Pg.105]    [Pg.444]    [Pg.445]    [Pg.445]    [Pg.444]    [Pg.445]    [Pg.445]    [Pg.89]    [Pg.234]    [Pg.274]    [Pg.98]    [Pg.159]    [Pg.642]    [Pg.141]    [Pg.154]    [Pg.267]    [Pg.451]    [Pg.452]    [Pg.452]    [Pg.246]   
See also in sourсe #XX -- [ Pg.444 , Pg.445 ]

See also in sourсe #XX -- [ Pg.444 , Pg.445 ]

See also in sourсe #XX -- [ Pg.417 , Pg.418 ]

See also in sourсe #XX -- [ Pg.420 , Pg.421 ]




SEARCH



Allylic and Benzylic Halides in Nucleophilic Substitution Reactions

Benzyl halides

Benzylic halides in nucleophilic substitution reactions

Benzylic substitution

Benzyllic halides

Halide nucleophilicities

Halides nucleophilicity

Nucleophilic Substitution in Benzylic Halides

Nucleophilic alkyl substitution benzylic halides

Substituted halides

Substitution halides

© 2024 chempedia.info