Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzylic elimination

Scheme 3 Releasable PEGylation based on 1,6-benzyl elimination prodrug strategy... Scheme 3 Releasable PEGylation based on 1,6-benzyl elimination prodrug strategy...
Most successful PEG-anticancer prodrugs in preclinical studies have been probably PEG conjugates with taxanes camp-tothecin (CPT) (Prothecan ) and paclitaxel (PCL) ° ° which have been approved by FDA for clinical studies. This approval was based on detailed study of conjugation reactions of taxanes with PEG and study of optimal spacers enabling controlled drug release including the benzyl elimination and trimethyl lock... [Pg.22]

Reversible PEGylation reactions involving 1,4- or 1,6- benzyl elimination (BE) and bicine linkers are well-established strategies for releasable PEGylation of small drugs,... [Pg.73]

Mix 31 g. (29-5 ml.) of benzyl alcohol (Section IV, 123 and Section IV,200) and 45 g. (43 ml.) of glacial acetic acid in a 500 ml. round-bottomed flask introduce 1 ml. of concentrated sulphuric acid and a few fragments of porous pot. Attach a reflux condenser to the flask and boil the mixture gently for 9 hours. Pour the reaction mixture into about 200 ml. of water contained in a separatory funnel, add 10 ml. of carbon tetrachloride (to eliminate emulsion formation owing to the slight difference in density of the ester and water, compare Methyl Benzoate, Section IV,176) and shake. Separate the lower layer (solution of benzyl acetate in carbon tetrachloride) and discard the upper aqueous layer. Return the lower layer to the funnel, and wash it successively with water, concentrated sodium bicarbonate solution (until effervescence ceases) and water. Dry over 5 g. of anhydrous magnesium sulphate, and distil under normal pressure (Fig. II, 13, 2) with the aid of an air bath (Fig. II, 5, 3). Collect the benzyl acetate a (colourless liquid) at 213-215°. The yield is 16 g. [Pg.783]

Two efficient syntheses of strained cyclophanes indicate the synthetic potential of allyl or benzyl sulfide intermediates, in which the combined nucleophilicity and redox activity of the sulfur atom can be used. The dibenzylic sulfides from xylylene dihalides and -dithiols can be methylated with dimethoxycarbenium tetrafiuoroborate (H. Meerwein, 1960 R.F. Borch, 1968, 1969 from trimethyl orthoformate and BFj, 3 4). The sulfonium salts are deprotonated and rearrange to methyl sulfides (Stevens rearrangement). Repeated methylation and Hofmann elimination yields double bonds (R.H. Mitchell, 1974). [Pg.38]

Addition of several organomercury compounds (methyl, aryl, and benzyl) to conjugated dienes in the presence of Pd(II) salts generates the ir-allylpalladium complex 422, which is subjected to further transformations. A secondary amine reacts to give the tertiary allylic amine 423 in a modest yield along with diene 424 and reduced product 425[382,383]. Even the unconjugated diene 426 is converted into the 7r-allyllic palladium complex 427 by the reaction of PhHgCI via the elimination and reverse readdition of H—Pd—Cl[383]. [Pg.82]

A interesting and useful reaetion is the intramolecular polycyclization reaction of polyalkenes by tandem or domino insertions of alkenes to give polycyclic compounds[l 38]. In the tandem cyclization. an intermediate in many cases is a neopentylpalladium formed by the insertion of 1,1-disubstituted alkenes, which has no possibility of /3-elimination. The key step in the total synthesis of scopadulcic acid is the Pd-catalyzed construction of the tricyclic system 202 containing the bicyclo[3.2. Ijoctane substructure. The single tricyclic product 202 was obtained in 82% yield from 201 [20,164). The benzyl chloride 203 undergoes oxidative addition and alkene insertion. Formation of the spiro compound 204 by the intramolecular double insertion of alkenes is an exam-ple[165]. [Pg.158]

In the reaction of aryl and alkenyl halides with 1,3-pentadiene (248), amine and alcohol capture the 7r-allylpalladium intermediate to form 249. In the reactions of o-iodoaniline (250) and o-iodobenzyl alcohol (253) with 1,3-dienes, the amine and benzyl alcohol capture the Tr-allylpalladium intermediates 251 and 254 to give 252 and 255[173-175]. The reaction of o-iodoaniline (250) with 1,4-pen tadiene (256) affords the cyclized product 260 via arylpalladiuni formation, addition to the diene 256 to form 257. palladium migration (elimination of Pd—H and readdition to give 258) to form the Tr-allylpalladium 259, and intramolecular displacement of Tr-allylpalladium with the amine to form 260[176], o-Iodophenol reacts similarly. [Pg.164]

Various S-nucleophiles are allylated. Allylic acetates or carbonates react with thiols or trimethylsilyl sulfide (353) to give the allylic sulfide 354[222], Allyl sulfides are prepared by Pd-catalyzed allylic rearrangement of the dithio-carbonate 355 with elimination of COS under mild conditions. The benzyl alkyl sulfide 357 can be prepared from the dithiocarbonate 356 at 65 C[223,224], The allyl aryl sufide 359 is prepared by the reaction of an allylic carbonate with the aromatic thiol 358 by use of dppb under neutral condi-tions[225]. The O-allyl phosphoro- or phosphonothionate 360 undergoes the thiono thiolo allylic rearrangement (from 0-allyl to S -allyl rearrangement) to afford 361 and 362 at 130 C[226],... [Pg.338]

An important method for construction of functionalized 3-alkyl substituents involves introduction of a nucleophilic carbon synthon by displacement of an a-substituent. This corresponds to formation of a benzylic bond but the ability of the indole ring to act as an electron donor strongly influences the reaction pattern. Under many conditions displacement takes place by an elimination-addition sequence[l]. Substituents that are normally poor leaving groups, e.g. alkoxy or dialkylamino, exhibit a convenient level of reactivity. Conversely, the 3-(halomethyl)indoles are too reactive to be synthetically useful unless stabilized by a ring EW substituent. 3-(Dimethylaminomethyl)indoles (gramine derivatives) prepared by Mannich reactions or the derived quaternary salts are often the preferred starting material for the nucleophilic substitution reactions. [Pg.119]

Benzylic halides that are secondary resemble secondary alkyl halides in that they undergo substitution only when the nucleophile is weakly basic If the nucleophile is a strong base such as sodium ethoxide elimination by the E2 mechanism is faster than substitution... [Pg.445]

Secondary and tertiary alkyl halides are not suitable because they react with alkox ide bases by E2 elimination rather than by 8 2 substitution Whether the alkoxide base IS primary secondary or tertiary is much less important than the nature of the alkyl halide Thus benzyl isopropyl ether is prepared m high yield from benzyl chloride a pri mary chloride that is incapable of undergoing elimination and sodium isopropoxide... [Pg.672]

The alternative synthetic route using the sodium salt of benzyl alcohol and an isopropyl halide would be much less effective because of increased competition from elimination as the alkyl halide becomes more sterically hindered... [Pg.673]

In the presence of sulfide or sulfhydryl anions, the quinonemethide is attacked and a benzyl thiol formed. The P-aryl ether linkage to the next phenylpropane unit is broken down as a result of neighboring-group attack by the sulfur, eliminating the aryloxy group which becomes reactive phenolate ion (eq. 2). If sulfide is not present, a principal reaction is the formation of the stable aryl enol ether, ArCH=CHOAr. A smaller amount of this product also forms in the presence of sulfhydryl anion. [Pg.261]

This can be circumvented by choosing alkyl groups with no P H, eg, methyl, neopentyl, trimethylsilylmethyl, phenyl and other aryl groups, and benzyl. The linear transition state for -elimination can also be made stericaHy impossible. The most successful technique for stabilization combines both principles. The pentahaptocyclopentadienyl ring anion (Cp) has six TT-electrons available to share with titanium. Biscyclopentadienyltitanium dichloride... [Pg.154]

Human sensitization studies were negative at 10% solution (47). Undiluted benzyl alcohol produces moderate dermal irritation in guinea pigs and mild dermal irritation in rabbits (48,49). Severe eye irritation was noted in a rabbit study (50). Acute oral rat LD q values were reported between 1.23 and 3.10 g/kg (50—52). A dermal rabbit LD q value of 2.0 g/kg has been reported (49). Rats died after 2 h when exposed to a 200-ppm vapor concentration (53). Benzyl alcohol is readily oxidized in animals and humans to benzoic acid [65-85-0] which is then conjugated with glycine [56-40-6], and rapidly eliminated in the urine as hippuric acid [495-69-2] (54). [Pg.61]

Esters of low volatility are accesible via several types of esterification. In the case of esters of butyl and amyl alcohols, water is removed as a binary azeotropic mixture with the alcohol. To produce esters of the lower alcohols (methyl, ethyl, propyl), it may be necessary to add a hydrocarbon such as benzene or toluene to increase the amount of distilled water. With high boiling alcohols, ie, benzyl, furfuryl, and P-phenylethyl, an accessory azeotroping Hquid is useful to eliminate the water by distillation. [Pg.376]

Many carbamates have been used as protective groups. They are arranged in this chapter in order of increasing complexity of stmcture. The most useful compounds do not necessarily have the simplest stmctures, but are /-butyl (BOC), readily cleaved by acidic hydrolysis benzyl (Cbz or Z), cleaved by catalytic hy-drogenolysis 2,4-dichlorobenzyl, stable to the acid-catalyzed hydrolysis of benzyl and /-butyl carbamates 2-(biphenylyl)isopropyl, cleaved more easily than /-butyl carbamate by dilute acetic acid 9-fluorenylmethyl, cleaved by /3-elimination with base isonicotinyl, cleaved by reduction with zinc in acetic acid 1-adamantyl, readily cleaved by trifluoroacetic acid and ally], readily cleaved by Pd-catalyzed isomerisation. [Pg.316]

In contrast to the nature of TBAF, tetrabutylammoniuin bifluoride converts benzyl bromide to its fluoride in 100% yield and 4-chloronitrobenzene to 4 fluoronitrobenzene in 70% yield 1-Bromodecane is transformed by tetrabutyl-atnmonium bifluoride to 1-fluorodecanein 88% yield, and Tchlorododecane forms 1-fluorododecane m 83% yield In neither case are significant amounts of the elimination products formed [25]... [Pg.179]

Trifluoromethyl groups are very resistant to hydrolysis, unless they are allylic or benzylic, or vicinal to a carbon linked to hydrogen. In the last case, elimination of hydrogen fluonde leads to the formation of a difluoromethylene group which is key to additional reactions... [Pg.433]

Primary benzylic halides are ideal substrates for Sn2 reactions because they are very reactive toward good nucleophiles and cannot undergo competing elimination. [Pg.444]


See other pages where Benzylic elimination is mentioned: [Pg.122]    [Pg.289]    [Pg.408]    [Pg.152]    [Pg.22]    [Pg.24]    [Pg.25]    [Pg.26]    [Pg.57]    [Pg.223]    [Pg.74]    [Pg.74]    [Pg.122]    [Pg.289]    [Pg.408]    [Pg.152]    [Pg.22]    [Pg.24]    [Pg.25]    [Pg.26]    [Pg.57]    [Pg.223]    [Pg.74]    [Pg.74]    [Pg.48]    [Pg.200]    [Pg.209]    [Pg.212]    [Pg.222]    [Pg.226]    [Pg.238]    [Pg.445]    [Pg.445]    [Pg.293]    [Pg.481]    [Pg.316]    [Pg.120]    [Pg.179]    [Pg.967]    [Pg.445]    [Pg.445]   
See also in sourсe #XX -- [ Pg.309 ]




SEARCH



Benzylic fluorine, elimination

Elimination of benzylic halides

Stereoselectivity benzyl derivative /3-eliminations

© 2024 chempedia.info