Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene tetrachloride

In Orloff and Kolka s original scheme, 1.4-elimination figured prominantly in the dehydrohalogenation of both a- and y-benzene tetrachlorides, yet these substrates differ more than 40-fold in reactivity and have a similar stereochemistry for the second elimination. On the modified scheme, this rate difference is accommodated by consideration of the ease of, 2-anti- to l,2-sy -elimination. [Pg.345]

Both polymers exhibit these common characteristics Soluble in acetone, benzene, tetrachloride, chloroform, dioxane, ethyl acetate, diethyl ether, and THF. Insoluble in cyclohexane, dimethyl formamide, methanol, and water. [Pg.324]

Tetrachlorethylene. See Perchloroethylene Tetrachlorobenzene. See 1,2,4,5-Tetrachlorobenzene 1,2,3,4-Tetrachlorobenzene CAS 634-66-2 EINECS/ELINCS 211-214-0 Synonyms 1,2,3,4-Benzene tetrachloride Benzene, 1,2,3,4-tetrachloro-Empirical C6H2CI4... [Pg.4349]

Chlorofonn, carbon tetrachloride, iodoform and the halogeno-benzenes do not give precipitates with cold aqueous silver nitrate solution. [Pg.391]

Now calculate the molecular weight of the substance precisely as described on p. 442. The weight of the solvent employed may be calculated from the following densities methanol, 0 810 rectified spirit, 0-807 acetone, 0 797 ethyl acetate, 0 905 chloroform, 1 504 carbon tetrachloride, 1 582 benzene, 0 880 toluene, 0-871 cyclohexane, 0-724 i, 2-dichloroethane, 1 252. [Pg.445]

Selection of solvents. The choice of solvent will naturally depend in the first place upon the solubility relations of the substance. If this is already in solution, for example, as an extract, it is usually evaporated to dryness under reduced pressure and then dissolved in a suitable medium the solution must be dilute since crystallisation in the column must be avoided. The solvents generally employed possess boiling points between 40° and 85°. The most widely used medium is light petroleum (b.p. not above 80°) others are cycZohexane, carbon disulphide, benzene, chloroform, carbon tetrachloride, methylene chloride, ethyl acetate, ethyl alcohol, acetone, ether and acetic acid. [Pg.161]

Suspend in a round-bottomed flask 1 g. of the substance in 75-80 ml. of boihng water to which about 0 -5 g. of sodium carbonate crystals have been added, and introduce slowly 4 g. of finely-powdered potassium permanganate. Heat under reflux until the purple colour of the permanganate has disappeared (1-4 hours). Allow the mixture to cool and carefully acidify with dilute sulphuric acid. Heat the mixture under reflux for a further 30 minutes and then cool. Remove any excess of manganese dioxide by the addition of a little sodium bisulphite. Filter the precipitated acid and recrystallise it from a suitable solvent (e.g., benzene, alcohol, dilute alcohol or water). If the acid does not separate from the solution, extract it with ether, benzene or carbon tetrachloride. [Pg.520]

Dissolve 0-5 g. of the phenol in 2 -5 ml. of pyridine, and add one equivalent of dlphenylcarbamyl chloride (or 0- 0-5 g. if the molecular weight is uncertain). Reflux the mixture for 30-60 minutes on a boiling water bath, and then pour into about 25 ml. of water. Filter the derivative, wash with a little sodium bicarbonate solution, and recrystallise from alcohol benzene, light petroleum (b.p. 60-80°) or carbon tetrachloride. [Pg.683]

Benzophenone is more conveniently prepared from benzene and excess of carbon tetrachloride ... [Pg.726]

About 220 ml. of carbon tetrachloride are recovered this contains a little benzene, but may be used, after drying and distilling, in. another run. [Pg.734]

Triphenylchloromethane (C3Hj)3CCl is readily hydrolysed by warm water to triphenylcarbinol, thus providing an alternative method for the preparation of the latter. The former is conveniently obtained by the reaction between carbon tetrachloride and benzene in the presence of anhydrous aluminium ehloride ... [Pg.811]

Method 1. Equip a 1 litre three-necked flask (or bolt-head flask) with a separatory funnel, a mechanical stirrer (Fig. II, 7, 10), a thermometer (with bulb within 2 cm. of the bottom) and an exit tube leading to a gas absorption device (Fig. II, 8, 1, c). Place 700 g. (400 ml.) of chloro-sulphonic acid in the flask and add slowly, with stirring, 156 g. (176 ml.) of pure benzene (1) maintain the temperature between 20° and 25° by immersing the flask in cold water, if necessary. After the addition is complete (about 2 5 hours), stir the mixture for 1 hour, and then pour it on to 1500 g. of crushed ice. Add 200 ml. of carbon tetrachloride, stir, and separate the oil as soon as possible (otherwise appreciable hydrolysis occurs) extract the aqueous layer with 100 ml. of carbon tetrachloride. Wash the combined extracts with dilute sodium carbonate solution, distil off most of the solvent under atmospheric pressure (2), and distil the residue under reduced pressure. Collect the benzenesulphonyl chloride at 118-120°/15 mm. it solidifies to a colourless sohd, m.p. 13-14°, when cooled in ice. The yield is 270 g. A small amount (10-20 g.) of diphen3 lsulphone, b.p. 225°/10 mm., m.p. 128°, remains in the flask. [Pg.822]

Without carbon, the basis for life would be impossible. While it has been thought that silicon might take the place of carbon in forming a host of similar compounds, it is now not possible to form stable compounds with very long chains of silicon atoms. The atmosphere of Mars contains 96.2% CO2. Some of the most important compounds of carbon are carbon dioxide (CO2), carbon monoxide (CO), carbon disulfide (CS2), chloroform (CHCb), carbon tetrachloride (CCk), methane (CHr), ethylene (C2H4), acetylene (C2H2), benzene (CeHe), acetic acid (CHsCOOH), and their derivatives. [Pg.16]

A similar circumstance is detectable for nitrations in organic solvents, and has been established for sulpholan, nitromethane, 7-5 % aqueous sulpholan, and 15 % aqueous nitromethane. Nitrations in the two organic solvents are, in some instances, zeroth order in the concentration of the aromatic compound (table 3.2). In these circumstances comparisons with benzene can only be made by the competitive method. In the aqueous organic solvents the reactions are first order in the concentration of the aromatic ( 3.2.3) and comparisons could be made either competitively or by directly measuring the second-order rate constants. Data are given in table 3.6, and compared there with data for nitration in perchloric and sulphuric acids (see table 2.6). Nitration at the encounter rate has been demonstrated in carbon tetrachloride, but less fully explored. ... [Pg.46]

Solutions of dinitrogen pentoxide have been used in preparative nitrations.Benzene, bromobenzene, and toluene were nitrated rapidly in solutions of the pentoxide in carbon tetrachloride nitrobenzene could not be nitrated under similar conditions, but reacted violently with solid dinitrogen pentoxide. [Pg.51]

Kinetic studies of nitration using dilute solutions of dinitrogen pentoxide in organic solvents, chiefly carbon tetrachloride, have provided evidence for the operation, under certain circumstances of the molecular species as the electrophile. The reactions of benzene and toluene were inconveniently fast, and therefore a series of halogenobenzenes and aromatic esters was examined. [Pg.52]

Nitration using this reagent was first investigated, by Francis. He showed that benzene and some of its homologues bromobenzene, benzonitrile, benzoyl chloride, benzaldehyde and some related compounds, and phenol were mono-nitrated in solutions of benzoyl nitrate in carbon tetrachloride anilines would not react cleanly and a series of naphthols yielded dinitro compounds. Further work on the orientation of substitution associated this reagent with higher proportions of o-substitution than that brought about by nitric acid this point is discussed below ( 5.3.4). [Pg.77]

The kinetics of nitration of benzene in solutions at c. 20 °C in carbon tetrachloride have been investigated. In the presence of an excess of benzene (c. 2-4 mol 1 ) the rate was kinetically of the first order in the concentration of benzoyl nitrate. The rate of reaction was depressed by the addition of benzoic anhydride, provided that some benzoic acid was present. This result suggested that benzoyl nitrate itself was not responsible for the nitration, but generated dinitrogen pentoxide... [Pg.77]

First-order nitrations. The kinetics of nitrations in solutions of acetyl nitrate in acetic anhydride were first investigated by Wibaut. He obtained evidence for a second-order rate law, but this was subsequently disproved. A more detailed study was made using benzene, toluene, chloro- and bromo-benzene. The rate of nitration of benzene was found to be of the first order in the concentration of aromatic and third order in the concentration of acetyl nitrate the latter conclusion disagrees with later work (see below). Nitration in solutions containing similar concentrations of acetyl nitrate in acetic acid was too slow to measure, but was accelerated slightly by the addition of more acetic anhydride. Similar solutions in carbon tetrachloride nitrated benzene too quickly, and the concentration of acetyl nitrate had to be reduced from 0-7 to o-i mol 1 to permit the observation of a rate similar to that which the more concentrated solution yields in acetic anhydride. [Pg.85]

The heats of formation of Tt-complexes are small thus, — A//2soc for complexes of benzene and mesitylene with iodine in carbon tetrachloride are 5-5 and i2-o kj mol , respectively. Although substituent effects which increase the rates of electrophilic substitutions also increase the stabilities of the 7r-complexes, these effects are very much weaker in the latter circumstances than in the former the heats of formation just quoted should be compared with the relative rates of chlorination and bromination of benzene and mesitylene (i 3 o6 x 10 and i a-Sq x 10 , respectively, in acetic acid at 25 °C). [Pg.117]

A large number of thermodynamic studies of binary systems were undertaken to find and determine eventual intermolecular associations for thiazole Meyer et al. (303, 304) discovered eutectic mixtures for the following systems -thiazole/cyclohexane at -38.4°C, Wt = 0.815 -thiazole/carbon tetrachloride at -60.8°C, Mt = 0.46 -thiazole/benzene at -48.5°C, nr = 0.70. [Pg.87]

The object of these studies has been the determination of the degree of association in thiazole and its alkyl derivatives. Various solvents have been used cyclohexane (154), carbon tetrachloride (155, 156), benzene and nitrobenzene (157). [Pg.357]

Benzene Hexane Carbon tetrachloride Ethanol Ethyl acetate... [Pg.1073]

For other adsorptives the experimental evidence, though less plentiful than with nitrogen, supports the view that at a given temperature the lower closure point is never situated below a critical relative pressure which is characteristic of the adsorptive. Thus, for benzene at 298 K Dubinin noted a value of 017 on active carbons, and on active charcoals Everett and Whitton found 0-19 other values, at 298 K, are 0-20 on alumina xerogel, 0-20-0-22 on titania xerogel and 017-0-20 on ammonium silicomolybdate. Carbon tetrachloride at 298 K gives indication of a minimum closure point at 0-20-0-25 on a number of solids including... [Pg.155]

A factor militating against the use of other adsorptives for pore size determination at the present time is the lack of reliable r-curves. The number of published isotherms of vapours such as benzene, carbon tetrachloride or the lower alkanes, or even such simple inorganic substances as carbon dioxide, on a reasonable number of well-defined non-porous adsorbents, is very small. [Pg.167]

Acrylonitrile is miscible in a wide range of organic s lolvents, including acetone, benzene, carbon tetrachloride, diethyl ether, ethyl acetate, ethylene ... [Pg.181]

Other procedures have also been reported (38,110,111). The properties and chemistry of 9-BBN have been reviewed (112). The reagent is a white crystalline soHd, stable indefinitely at room temperature, soluble in hexane, carbon tetrachloride, benzene, tetrahydrofuran, and diethyl ether. It exists as a... [Pg.310]


See other pages where Benzene tetrachloride is mentioned: [Pg.192]    [Pg.344]    [Pg.436]    [Pg.192]    [Pg.344]    [Pg.436]    [Pg.163]    [Pg.370]    [Pg.196]    [Pg.528]    [Pg.45]    [Pg.94]    [Pg.138]    [Pg.139]    [Pg.143]    [Pg.144]    [Pg.149]    [Pg.733]    [Pg.734]    [Pg.814]    [Pg.815]    [Pg.35]    [Pg.166]    [Pg.307]    [Pg.311]   


SEARCH



Carbon tetrachloride Benzene

Carbon, tetrachloride and benzene

Coarse-Grained Intermolecular Potentials Derived from the Effective Fragment Potential Application to Water, Benzene, and Carbon Tetrachloride

Prediction of in the System Acetone-Benzene-Carbon Tetrachloride

Silicon tetrachloride benzene

Triphenylchloromethane from benzene and carbon tetrachloride

© 2024 chempedia.info