Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene rate constant

Line No. Substrate Nucleophile in benzene Rate constant (temp. °C) 10 liter mole i sec i Ref. [Pg.274]

Calculations usirig this value afford a partition coefficient for 5.2 of 96 and a micellar second-order rate constant of 0.21 M" s" . This partition coefficient is higher than the corresponding values for SDS micelles and CTAB micelles given in Table 5.2. This trend is in agreement with literature data, that indicate that Cu(DS)2 micelles are able to solubilize 1.5 times as much benzene as SDS micelles . Most likely this enhanced solubilisation is a result of the higher counterion binding of Cu(DS)2... [Pg.144]

The value of the second-order rate constant for nitration of benzene-sulphonic acid in anhydrous sulphuric acid varies with the concentration of the aromatic substrate and with that of additives such as nitromethane and sulphuryl chloride. The effect seems to depend on the total concentration of non-electrolyte, moderate values of which (up to about 0-5 mol 1 ) depress the rate constant. More substantial concentrations of non-electrolytes can cause marked rate enhancements in this medium. Added hydrogen sulphate salts or bases such as pyridine... [Pg.18]

For nitrations in sulphuric and perchloric acids an increase in the reactivity of the aromatic compound being nitrated beyond the level of about 38 times the reactivity of benzene cannot be detected. At this level, and with compounds which might be expected to surpass it, a roughly constant value of the second-order rate constant is found (table 2.6) because aromatic molecules and nitronium ions are reacting upon encounter. The encounter rate is measurable, and recognisable, because the concentration of the effective electrophile is so small. [Pg.46]

A similar circumstance is detectable for nitrations in organic solvents, and has been established for sulpholan, nitromethane, 7-5 % aqueous sulpholan, and 15 % aqueous nitromethane. Nitrations in the two organic solvents are, in some instances, zeroth order in the concentration of the aromatic compound (table 3.2). In these circumstances comparisons with benzene can only be made by the competitive method. In the aqueous organic solvents the reactions are first order in the concentration of the aromatic ( 3.2.3) and comparisons could be made either competitively or by directly measuring the second-order rate constants. Data are given in table 3.6, and compared there with data for nitration in perchloric and sulphuric acids (see table 2.6). Nitration at the encounter rate has been demonstrated in carbon tetrachloride, but less fully explored. ... [Pg.46]

Relative rate meaning, here, simply the ratio of nitro-alkylbenzene to nitrobenzene, multiplied by the initial ratio of alkylbenzene to benzene. This is not precisely the same as the ratio of rate constants for nitration. ... [Pg.66]

The kinetics of the nitration of benzene, toluene and mesitylene in mixtures prepared from nitric acid and acetic anhydride have been studied by Hartshorn and Thompson. Under zeroth order conditions, the dependence of the rate of nitration of mesitylene on the stoichiometric concentrations of nitric acid, acetic acid and lithium nitrate were found to be as described in section 5.3.5. When the conditions were such that the rate depended upon the first power of the concentration of the aromatic substrate, the first order rate constant was found to vary with the stoichiometric concentration of nitric acid as shown on the graph below. An approximately third order dependence on this quantity was found with mesitylene and toluene, but with benzene, increasing the stoichiometric concentration of nitric acid caused a change to an approximately second order dependence. Relative reactivities, however, were found to be insensitive... [Pg.224]

Table 7.11 Fluorescence quantum yield Table 7.11 Fluorescence quantum yield <Pp, fluorescence lifetime Xp, radiative, k, and non-radiative, k, rate constants for the Si state of benzene...
The kinetics of initiation reactions of alkyllithium compounds often exhibit fractional kinetic order dependence on the total concentration of initiator as shown in Table 2. For example, the kinetics of the initiation reaction of //-butyUithium with styrene monomer in benzene exhibit a first-order dependence on styrene concentration and a one-sixth order dependence on //-butyUithium concentration as shown in equation 13, where is the rate constant for... [Pg.238]

The table below gives first-order rate constants for reaction of substituted benzenes with w-nitrobenzenesulfonyl peroxide. From these data, calculate the overall relative reactivity and partial rate factors. Does this reaction fit the pattern of an electrophilic aromatic substitution If so, does the active electrophile exhibit low, moderate, or high substrate and position selectivity ... [Pg.598]

The intermediate diphenylhydroxymethyl radical has been detected after generation by flash photolysis. Photolysis of benzophenone in benzene solution containing potential hydrogen donors results in the formation of two intermediates that are detectable, and their rates of decay have been measured. One intermediate is the PhjCOH radical. It disappears by combination with another radical in a second-order process. A much shorter-lived species disappears with first-order kinetics in the presence of excess amounts of various hydrogen donors. The pseudo-first-order rate constants vary with the structure of the donor with 2,2-diphenylethanol, for example, k = 2 x 10 s . The rate is much less with poorer hydrogen-atom donors. The rapidly reacting intermediate is the triplet excited state of benzophenone. [Pg.755]

Asano and co-workers have reported die kinetic effects of pressure, solvent, and substituent on geometric isomerization about die carbon-nitrogen double bond for pyrazol-3-one azomethines 406 (R = H), 406 (R = NO2) and 407, (Scheme 93). The results demonstrate the versatility of die inversion mechanism. The rotation mechanism has been invalidated. First-wder rate constants and activating volumes for diermal E-Z isomerization for 406 (R = H) and 406 (R = NO2) are given at 25°C in benzene and methanol (89JOC379). [Pg.143]

The quantitative solution of the problem, i.e. simultaneous determination of both the sequence of surface chemical steps and the ratios of the rate constants of adsorption-desorption processes to the rate constants of surface reactions from experimental kinetic data, is extraordinarily difficult. The attempt made by Smith and Prater 82) in a study of cyclohexane-cyclohexene-benzene interconversion, using elegant mathematic procedures based on the previous theoretical treatment 28), has met with only partial success. Nevertheless, their work is an example of how a sophisticated approach to the quantitative solution of a coupled heterogeneous catalytic system should be employed if the system is studied as a whole. [Pg.17]

It has been proposed that aromatic solvents, carbon disulfide, and sulfur dioxide form a complex with atomic chlorine and that this substantially modifies both its overall reactivity and the specificity of its reactions.126 For example, in reactions of Cl with aliphatic hydrocarbons, there is a dramatic increase in Ihe specificity for abstraction of tertiary or secondary over primary hydrogens in benzene as opposed to aliphatic solvents. At the same time, the overall rate constant for abstraction is reduced by up to two orders of magnitude in the aromatic solvent.1"6 The exact nature of the complex responsible for this effect, whether a ji-coinplex (24) or a chlorocyclohexadienyl radical (25), is not yet resolved.126- 22... [Pg.34]

The electron transfer step is typically fast and efficient. Griller et a/.292 measured absolute rate constants for decay of benzophenone triplet in the presence of aliphatic tertiary amines in benzene as solvent. Values lie in die range 3-4x109 M 1 s 1 and quantum yields are close to unity. [Pg.103]

Hammett discovered linear relationships between two sets of equilibrium or rate constants of substituted benzene derivatives (reviews Hammett 1937, 1940, 1970, Johnson 1973, Exner 1988, and others see Scheme 7-1). [Pg.148]

In Scheme 7-1 kx and kn refer to the rate constants for a benzene derivative, in our case the benzenediazonium ion, bearing a substituent X in the 3- or 4-position, and the corresponding unsubstituted benzene derivative respectively. The term p is Hammett s reaction constant for the reaction, and o is Hammett s substituent constant which is, at least in principle, independent of the nature of the reaction but different for the 3- and 4-positions. A plot of log kx (or log kx - log kH) versus o should give a straight line. Its slope (positive or negative) corresponds to the reaction constant p. Equilibrium relationships are treated analogously. [Pg.148]

The sum of all results is consistent with the formation of both the aryl cation and the aryl radical in the aqueous acid system without copper, and with the dominance of the aryl radical in the presence of copper. The product ratios are also qualitatively consistent with the hypothesis that the reactivity of aryl cations with nucleophiles is close to that of a diffusion-controlled process (see Sec. 8.3), and that aryl radicals have arylation rate constants that are about two orders of magnitude smaller than that for diffusion control (0.4-1.7 X 107 m-1s-1 Kryger et al., 1977 Scaiano and Stewart, 1983). Due to the relatively low yields of these dediazoniations in the pentyl nitrite/benzene systems, no conclusions should be drawn from the results. [Pg.267]

Shatenshtein et al.5ia also found a similar dependence of rate coefficient upon the concentrations of stannic chloride and acetic acid in the dedeuteration of [l,4-2H2]-durene in benzene. Rate coefficients increased linearly with increasing stannic chloride concentration and at a constant value of this the rate increased only slightly with increasing acetic acid concentration, except at high concentrations of the latter when the rate then decreased (Table 155). Cryoscopic mea-... [Pg.240]

For benzoyl and acetyl peroxides, loss of carbon dioxide occurs in a stepwise process. Estimates of the rate constants for step c in Scheme 1 are 7 x 10 sec (benzene, 60°). The corresponding process for acetyl peroxide has k = 2x 10 sec (n-hexane, 60°), so that the lifetime of radical pairs containing acetoxy radicals is comparable to the time necessary for nuclear polarization to take place (Kaptein, 1971b Kaptein and den Hollander, 1972 Kaptein et al., 1972). Propionoxy radicals are claimed to decarboxylate 15-20 times faster than acetoxy radicals (Dombchik, 1969). [Pg.83]

B. l,3>2>Dioxaphospholens.—The kinetics of the addition of trialkyl phosphites to benzil have been investigated spectrophotometrically. The second-order reaction of trimethyl phosphite in dioxan has activation parameters of A// = 8.4 kcal mol and AS = — 47.5 e.u. In benzene the rate constant increases linearly with low concentrations of added organic acid and decreases linearly with low concentrations of added base. The Diels-Alder mechanism is considered unlikely on the basis of these data, and the slow step is considered to be nucleophilic addition of the phosphite to the carbon of the carbonyl group (see Scheme). [Pg.34]

Since the most direct evidence for specihc solvation of a carbene would be a spectroscopic signature distinct from that of the free carbene and also from that of a fully formed ylide, TRIR spectroscopy has been used to search for such car-bene-solvent interactions. Chlorophenylcarbene (32) and fluorophenylcarbene (33) were recently examined by TRIR spectroscopy in the absence and presence of tetrahydrofuran (THF) or benzene. These carbenes possess IR bands near 1225 cm that largely involve stretching of the partial double bond between the carbene carbon and the aromatic ring. It was anticipated that electron pair donation from a coordinating solvent such as THF or benzene into the empty carbene p-orbital might reduce the partial double bond character to the carbene center, shifting this vibrational frequency to a lower value. However, such shifts were not observed, perhaps because these halophenylcarbenes are so well stabilized that interactions with solvent are too weak to be observed. The bimolecular rate constant for the reaction of carbenes 32 and 33 with tetramethylethylene (TME) was also unaffected by THF or benzene, consistent with the lack of solvent coordination in these cases. °... [Pg.199]

Currently, benzene alkylation to produce ethylbenzene and cumene is routinely carried out using zeohtes. We performed a study comparing a zeohte Y embedded in TUD-1 to a commercial zeolite Y for ethylbenzene synthesis. Two different particle diameters (0.3 and 1.3 mm) were used for each catalyst. In Figure 41.7, the first-order rate constants were plotted versus particle diameter, which is analogous to a linear plot of effectiveness factor versus Thiele modulus. In this way, the rate constants were fitted for both catalysts. [Pg.375]

Here X denotes lb-moles of benzene per lb-mole of pure benzene feed and x, denotes lb-moles of diphenyl per lb-mole of pure benzene feed. The parameters k, and k2 are unknown reaction rate constants whereas K, and K2 are known equilibrium constants. The data consist of measurements of Xi and x2 in a flow reactor at eight values of the reciprocal space velocity t. The feed to the reactor was pure benzene. The experimental data are given in Table 6.2 (in Chapter 6). The governing ODEs can also be written as ... [Pg.130]


See other pages where Benzene rate constant is mentioned: [Pg.289]    [Pg.289]    [Pg.33]    [Pg.35]    [Pg.105]    [Pg.197]    [Pg.13]    [Pg.372]    [Pg.435]    [Pg.746]    [Pg.606]    [Pg.153]    [Pg.166]    [Pg.196]    [Pg.279]    [Pg.150]    [Pg.11]    [Pg.330]    [Pg.207]    [Pg.317]    [Pg.317]    [Pg.318]    [Pg.99]    [Pg.304]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Benzene constants

Benzene, absorption spectrum rate constants of unimolecular

© 2024 chempedia.info