Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene and Aromaticity

Why does the number of n electrons determine whether a compound is aromatic Cyclobutadiene is cyclic, planar, and completely conjugated, just like benzene, but why is benzene aromatic and cyclobutadiene antiaromatic ... [Pg.625]

Increasingly more stringent environmental regulations (e.g., lower benzene, aromatics, and olefin levels, more oxygenates, and lower RVP in gasoline lower aromatics levels and lower pour point in diesel fuel and lower sulfur in all fuels.)... [Pg.1]

The basicity of indole with a pK = 3.50 corresponds approximately to that of pyrrole. H-D-exchange experiments show that protonation occurs most rapidly at N however, since the N-protonated and the 2-protonated cations are thermodynamically less stabilized, protonation of indole occurs mainly on C-3 forming the more stabilized 3H-indolium ion (1) which retains full benzene aromaticity and delocalizes the positive charge with N-participation ... [Pg.126]

Arosolvan process A process for the extraction of benzene and toluene from a mixture of aromatic and saturated hydrocarbons using a mixture of water and N-methylpyrrolidone. The process is used when naphtha is cracked to produce alkenes. To prevent extraction of alkenes these are saturated by hydrogenation prior to extraction. [Pg.41]

BTX A mixture of low boiling point aromatics, i.e. benzene, toluene and xylenes. [Pg.69]

The results of the derivation (which is reproduced in Appendix A) are summarized in Figure 7. This figure applies to both reactive and resonance stabilized (such as benzene) systems. The compounds A and B are the reactant and product in a pericyclic reaction, or the two equivalent Kekule structures in an aromatic system. The parameter t, is the reaction coordinate in a pericyclic reaction or the coordinate interchanging two Kekule structures in aromatic (and antiaromatic) systems. The avoided crossing model [26-28] predicts that the two eigenfunctions of the two-state system may be fomred by in-phase and out-of-phase combinations of the noninteracting basic states A) and B). State A) differs from B) by the spin-pairing scheme. [Pg.342]

The course of aromatic substitution has been placed on a more scientific basis by the following rules of Hammick and Illingworth (jfour. Chem. Soc., 930. 2358), If a monosubstituted benzene derivative has the formula CgHsXY, where X is the atom joined to the benzene ring and Y is an atom or group of atoms attached to X, then —... [Pg.159]

The purpose of this eornpuLer project is Lo examine several polynuclear aromatic hydrocarbons and to relate their electron density patterns to their carcinogenic activity. If nucleophilic binding to DN.A is a significant step in blocking the normal transcription process of DN.A, electron density in the hydrocarbon should be positively correlated to its carcinogenic potency. To begin with, we shall rely on clinical evidence that benzene, naphthalene, and phenanthrene... [Pg.291]

The catalyst is inactive for the hydrogenation of the (isolated) benzene nucleus and so may bo used for the hydrogenation of aromatic compounds containing aldehyde, keto, carbalkoxy or amide groups to the corresponding alcohols, amines, etc., e.g., ethyl benzoate to benzyl alcohol methyl p-toluate to p-methylbenzyl alcohol ethyl cinnamate to 3 phenyl 1-propanol. [Pg.873]

In acetic acid the rates of nitration of chlorobenzene and bromo-benzene were fairly close to being first order in the concentration of aromatic, and nitration fully according to a first-order law was observed with O, m-, and/i-dichlorobenzene, ethyl benzoate and 1,2,4-trichloro-benzene. [Pg.35]

The most notable studies are those of Ingold, on the orienting and activating properties of substituents in the benzene nucleus, and of Dewar on the reactivities of an extensive series of polynuclear aromatic and related compounds ( 5.3.2). The former work was seminal in the foundation of the qualitative electronic theory of the relationship between structure and reactivity, and the latter is the most celebrated example of the more quantitative approaches to the same relationship ( 7.2.3). Both of the series of investigations employed the competitive method, and were not concerned with the kinetics of reaction. [Pg.76]

First-order nitrations. The kinetics of nitrations in solutions of acetyl nitrate in acetic anhydride were first investigated by Wibaut. He obtained evidence for a second-order rate law, but this was subsequently disproved. A more detailed study was made using benzene, toluene, chloro- and bromo-benzene. The rate of nitration of benzene was found to be of the first order in the concentration of aromatic and third order in the concentration of acetyl nitrate the latter conclusion disagrees with later work (see below). Nitration in solutions containing similar concentrations of acetyl nitrate in acetic acid was too slow to measure, but was accelerated slightly by the addition of more acetic anhydride. Similar solutions in carbon tetrachloride nitrated benzene too quickly, and the concentration of acetyl nitrate had to be reduced from 0-7 to o-i mol 1 to permit the observation of a rate similar to that which the more concentrated solution yields in acetic anhydride. [Pg.85]

The kinetics of the nitration of benzene, toluene and mesitylene in mixtures prepared from nitric acid and acetic anhydride have been studied by Hartshorn and Thompson. Under zeroth order conditions, the dependence of the rate of nitration of mesitylene on the stoichiometric concentrations of nitric acid, acetic acid and lithium nitrate were found to be as described in section 5.3.5. When the conditions were such that the rate depended upon the first power of the concentration of the aromatic substrate, the first order rate constant was found to vary with the stoichiometric concentration of nitric acid as shown on the graph below. An approximately third order dependence on this quantity was found with mesitylene and toluene, but with benzene, increasing the stoichiometric concentration of nitric acid caused a change to an approximately second order dependence. Relative reactivities, however, were found to be insensitive... [Pg.224]

The classification of hydrocarbons as aliphatic or aromatic took place m the 1860s when It was already apparent that there was something special about benzene toluene and their derivatives Their molecular formulas (benzene is CgHg toluene is C7Hj ) indicate that like alkenes and alkynes they are unsaturated and should undergo addition reac tions Under conditions m which bromine for example reacts rapidly with alkenes and alkynes however benzene proved to be inert Benzene does react with Bi2 m the pres ence of iron(III) bromide as a catalyst but even then addition isn t observed Substitu tion occurs instead ... [Pg.424]

All compounds that contain a benzene ring are aromatic and substituted derivatives of benzene make up the largest class of aromatic compounds Many such compounds are named by attaching the name of the substituent as a prefix to benzene... [Pg.432]

One of molecular orbital theories early successes came m 1931 when Erich Huckel dis covered an interesting pattern m the tt orbital energy levels of benzene cyclobutadiene and cyclooctatetraene By limiting his analysis to monocyclic conjugated polyenes and restricting the structures to planar geometries Huckel found that whether a hydrocarbon of this type was aromatic depended on its number of tt electrons He set forth what we now call Huckel s rule... [Pg.451]

Benzene cyclobutadiene and cyclooctatetraene provide clear examples of Huckel s rule Benzene with six tt electrons is a An + 2) system and is predicted to be aromatic by the rule Square cyclobutadiene and planar cyclooctatetraene are An systems with four and eight tt electrons respectively and are antiaromatic... [Pg.452]

Heterocyclic aromatic compounds can be polycyclic as well A benzene ring and a pyridine ring for example can share a common side m two different ways One way gives a compound called quinoline the other gives isoquinoline... [Pg.460]

Most of the resonance stabilization of benzene is lost when it is converted to the cyclohexadienyl cation intermediate In spite of being allylic a cyclohexadienyl cation IS not aromatic and possesses only a fraction of the resonance stabilization of benzene... [Pg.475]

Annulene satisfies the Huckel (4n+2) tt electron rule for aromaticity and many of its proper ties indicate aromaticity (Section 11 20) As shown in Figure 13 10a [18]annulene contains two different kinds of protons 12 he on the ring s periphery ( out side ) and 6 reside near the middle of the molecule ( inside ) The 2 1 ratio of outside/inside protons makes it easy to assign the signals in the NMR spectrum The outside protons have a chemical shift 8 of 9 3 ppm which makes them even less shielded than those of benzene The six inside protons on the... [Pg.530]

In a polluted or urban atmosphere, O formation by the CH oxidation mechanism is overshadowed by the oxidation of other VOCs. Seed OH can be produced from reactions 4 and 5, but the photodisassociation of carbonyls and nitrous acid [7782-77-6] HNO2, (formed from the reaction of OH + NO and other reactions) are also important sources of OH ia polluted environments. An imperfect, but useful, measure of the rate of O formation by VOC oxidation is the rate of the initial OH-VOC reaction, shown ia Table 4 relative to the OH-CH rate for some commonly occurring VOCs. Also given are the median VOC concentrations. Shown for comparison are the relative reaction rates for two VOC species that are emitted by vegetation isoprene and a-piuene. In general, internally bonded olefins are the most reactive, followed ia decreasiag order by terminally bonded olefins, multi alkyl aromatics, monoalkyl aromatics, C and higher paraffins, C2—C paraffins, benzene, acetylene, and ethane. [Pg.370]

It is convenient to divide the petrochemical industry into two general sectors (/) olefins and (2) aromatics and their respective derivatives. Olefins ate straight- or branched-chain unsaturated hydrocarbons, the most important being ethylene (qv), [74-85-1] propjiene (qv) [115-07-17, and butadiene (qv) [106-99-0J. Aromatics are cycHc unsaturated hydrocarbons, the most important being benzene (qv) [71-43-2] toluene (qv) [108-88-3] p- s.y en.e [106-42-3] and (9-xylene [95-47-5] (see Xylenes and ethylbenzene) There are two other large-volume petrochemicals that do not fall easily into either of these two categories ammonia (qv) [7664-41-7] and methanol (qv) [67-56-1]. These two products ate derived primarily from methane [74-82-8] (natural gas) (see Hydrocarbons, c -c ). [Pg.171]

Nitrations can be performed in homogeneous media, using tetramethylene sulfone or nitromethane (nitroethane) as solvent. A large variety of aromatic compounds have been nitrated with nitronium salts in excellent yields in nonaqueous media. Sensitive compounds, otherwise easily hydroly2ed or oxidized by nitric acid, can be nitrated without secondary effects. Nitration of aromatic compounds is considered an irreversible reaction. However, the reversibihty of the reaction has been demonstrated in some cases, eg, 9-nitroanthracene, as well as pentamethylnitrobenzene transnitrate benzene, toluene, and mesitylene in the presence of superacids (158) (see Nitration). [Pg.561]

Hydrocarbons, compounds of carbon and hydrogen, are stmcturally classified as aromatic and aliphatic the latter includes alkanes (paraffins), alkenes (olefins), alkynes (acetylenes), and cycloparaffins. An example of a low molecular weight paraffin is methane [74-82-8], of an olefin, ethylene [74-85-1], of a cycloparaffin, cyclopentane [287-92-3], and of an aromatic, benzene [71-43-2]. Cmde petroleum oils [8002-05-9], which span a range of molecular weights of these compounds, excluding the very reactive olefins, have been classified according to their content as paraffinic, cycloparaffinic (naphthenic), or aromatic. The hydrocarbon class of terpenes is not discussed here. Terpenes, such as turpentine [8006-64-2] are found widely distributed in plants, and consist of repeating isoprene [78-79-5] units (see Isoprene Terpenoids). [Pg.364]

Aromatic Hydrocarbons. These are the most toxic of the hydrocarbons and inhalation of the vapor can cause acute intoxication. Benzene is particularly toxic and long-term exposure can cause anemia and leukopenia, even with concentrations too low for detection by odor or simple instmments. The currendy acceptable average vapor concentration for benzene is no more than 1 ppm. PolycycHc aromatics are not sufftcientiy volatile to present a threat by inhalation (except from pyrolysis of tobacco), but it is known that certain industrial products, such as coal tar, are rich in polycycHc aromatics and continued exposure of human skin to these products results in cancer. [Pg.370]

Benzene, toluene, and other aromatics that are easily nitrated can sometimes be nitrated using acids having zero NO/ concentrations (see Fig. 1). Two explanations for this are (/) NO/ is actually present but in concentrations too low to be measured by Raman spectra, and (2) NO/ is hydrated to form H2N0" 2> which is also a nitrating agent. [Pg.33]

Wax Cracking. One or more wax-cracked a-olefin plants were operated from 1962 to 1985 Chevron had two such plants at Richmond, California, and Shell had three in Europe. The wax-cracked olefins were of limited commercial value because they contained internal olefins, branched olefins, diolefins, aromatics, and paraffins. These were satisfactory for feed to alkyl benzene plants and for certain markets, but unsatisfactory for polyethylene comonomers and several other markets. Typical distributions were C 33% C q, 7% 25% and 35%. Since both odd and... [Pg.441]

Benzene, toluene, and xylene are made mosdy from catalytic reforming of naphthas with units similar to those already discussed. As a gross mixture, these aromatics are the backbone of gasoline blending for high octane numbers. However, there are many chemicals derived from these same aromatics thus many aromatic petrochemicals have their beginning by selective extraction from naphtha or gas—oil reformate. Benzene and cyclohexane are responsible for products such as nylon and polyester fibers, polystyrene, epoxy resins (qv), phenolic resins (qv), and polyurethanes (see Fibers Styrene plastics Urethane POLYiffiRs). [Pg.216]


See other pages where Benzene and Aromaticity is mentioned: [Pg.316]    [Pg.78]    [Pg.435]    [Pg.316]    [Pg.78]    [Pg.435]    [Pg.114]    [Pg.5]    [Pg.273]    [Pg.35]    [Pg.72]    [Pg.2]    [Pg.493]    [Pg.529]    [Pg.1104]    [Pg.410]    [Pg.171]    [Pg.172]    [Pg.175]    [Pg.175]    [Pg.175]    [Pg.165]    [Pg.405]    [Pg.158]    [Pg.164]   
See also in sourсe #XX -- [ Pg.14 ]

See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Aromatic compounds and aromaticity benzene

Aromaticity benzene

Benzene and Aromatic Compounds

Benzene and Aromaticity Electrophilic Aromatic Substitution

Benzene and the Concept of Aromaticity

Benzene conjugation and aromaticity

Complexes of Benzene and Related Aromatics

Dialkylation of Benzene and Polynuclear Aromatics

Key Concepts—Benzene and Aromatic Compounds

ONTENTS BENZENE AND POLYNUCLEAR AROMATIC OMPOUNDS

Structure and Resonance Energy of Benzene A First Look at Aromaticity

© 2024 chempedia.info