Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Beam-type mass spectrometer

A multipoint ion collector (also called the detector) consists of a large number of miniature electron multiplier elements assembled, or constructed, side by side over a plane. A multipoint collector can be an array, which detects a dispersed beam of ions simultaneously over a range of m/z values and is frequently used with a sector-type mass spectrometer. Alternatively, a microchannel plate collector detects all ions of one m/z value. When combined with a TOP analyzer, the microchannel plate affords an almost instantaneous mass spectrum. Because of their construction and operation, microchannel plate detectors are cheaper to fit and maintain. Multipoint detectors are particularly useful for situations in which ionization occurs within a very short space of time, as with some ionization sources, or in which only trace quantities of any substance are available. For such fleeting availability of ions, only multipoint collectors can measure a whole spectrum or part of a spectrum satisfactorily in the short time available. [Pg.217]

In essence, a guided-ion beam is a double mass spectrometer. Figure A3.5.9 shows a schematic diagram of a griided-ion beam apparatus [104]. Ions are created and extracted from an ion source. Many types of source have been used and the choice depends upon the application. Combining a flow tube such as that described in this chapter has proven to be versatile and it ensures the ions are thennalized [105]. After extraction, the ions are mass selected. Many types of mass spectrometer can be used a Wien ExB filter is shown. The ions are then injected into an octopole ion trap. The octopole consists of eight parallel rods arranged on a circle. An RF... [Pg.811]

Another instrument used in physical chemistry research that employs quadnipole mass filters is the guided ion beam mass spectrometer [31]. A schematic diagram of an example of this type of instrument is shown in figure B 1.7.13. A... [Pg.1345]

The term Q/TOF is used to describe a type of hybrid mass spectrometer system in which a quadrupole analyzer (Q) is used in conjunction with a time-of-flight analyzer (TOP). The use of two analyzers together (hybridized) provides distinct advantages that cannot be achieved by either analyzer individually. In the Q/TOF, the quadrupole is used in one of two modes to select the ions to be examined, and the TOF analyzer measures the actual mass spectrum. Hexapole assemblies are also used to help collimate the ion beams. The hybrid orthogonal Q/TOF instrument is illustrated in Figure 23.1. [Pg.169]

Alternatively, the ions in a mass spectrometer can also arrive at a multipoint collector as a temporally dispersed beam. Therefore, at any point in time, all ions of the same m/z value arrive simultaneously, and different m/z values arrive at other times. Ail elements of this collector detect the arrival of ions of one m/z value at any one instant of time. This type of detector, which is also an array, is called a microchannel plate collector of ions. [Pg.410]

After the analyzer of a mass spectrometer has dispersed a beam of ions in space or in time according to their various m/z values, they can be collected by a planar assembly of small electron multipliers. There are two types of multipoint planar collectors an array is used in the case of spatial separation, and a microchannel plate is used in the case of temporal separation. With both multipoint assemblies, all ions over a specified mass range are detected at the same time, or apparently at the same time, giving these assemblies distinct advantages over the single-point collector in the analysis of very small quantities of a substance or where ions are produced intermittently during short time intervals. [Pg.410]

In Dynamic Secondary Ion Ma s Spectrometry (SIMS), a focused ion beam is used to sputter material from a specific location on a solid surface in the form of neutral and ionized atoms and molecules. The ions are then accelerated into a mass spectrometer and separated according to their mass-to-charge ratios. Several kinds of mass spectrometers and instrument configurations are used, depending upon the type of materials analyzed and the desired results. [Pg.528]

Every mass spectrometer consists of four principal components (Fig 1) (1) the source, where a beam of gaseous ions are produced from the sample (2) the analyzer, where the ion beam is resolved into its characteristic mass species (3) the detector, where the ions are detected and their intensities measured (4) the sample introduction system to vaporize and admit the sample into the ion source. There is a wide variety in each of these components and only those types which are relevant to analytical and organic mass spectrometry will be emphasized in this survey. The instrumentation... [Pg.37]

Schematic representation of one type of mass spectrometer. An electron beam fragments gas atoms or molecules into positively charged ions. The ions are accelerated and then deflected by a magnet. Each fragment follows a trajectory that depends on its mass. Schematic representation of one type of mass spectrometer. An electron beam fragments gas atoms or molecules into positively charged ions. The ions are accelerated and then deflected by a magnet. Each fragment follows a trajectory that depends on its mass.
Mass spectrometers, workhorse instmments described in Chapter 2, require a vacuum to function. A mass spectrometer generates a beam of ions that is sorted according to specifications of the particular instrument. Usually, the sorting depends on differences in speed, trajectory, and mass. For instance, one type of mass spectrometer measures how long it takes ions to travel from one end of a tube to another. Residual gas must be removed from the tube to eliminate collisions between gas molecules and the ions that are being analyzed. As the diagram shows, collisions with unwanted gas molecules deflect the ions from their paths and change the expected mass spectral pattern. [Pg.308]

A mass spectrometer provides an example of a molecular beam, in this case a beam of molecular ions. Molecular beams are used in many studies of fundamental chemical interactions. In a high vacuum, a molecular beam allows chemists to study the reactions that take place through specifically designed types of collisions. For example, a crossed-beam experiment involves the intersection of two molecular beams of two different substances. The types of substances, molecular speeds, and orientations of the beams can be changed systematically to give detailed information about how chemical reactions occur at the molecular level. Chemists also have learned how to create molecular beams in which the molecules have very little energy of motion. These isolated, low-energy molecules are ideal for studies of fundamental molecular properties. [Pg.308]

Cl and El are both limited to materials that can be transferred to the ion source of a mass spectrometer without significant degradation prior to ionisation. This is accomplished either directly in the high vacuum of the mass spectrometer, or with heating of the material in the high vacuum. Sample introduction into the Cl source thus may take place by a direct insertion probe (including those of the desorption chemical ionisation type) for solid samples a GC interface for reasonably volatile samples in solution a reference inlet for calibration materials or a particle-beam interface for more polar organic molecules. This is not unlike the options for El operation. [Pg.363]

Various transport type interfaces, such as SFC-MB-MS and SFC-PB-MS, have been developed. The particle-beam interface eliminates most of the mobile phase using a two-stage momentum separator with the moving-belt interface, the column effluent is deposited on a belt, which is heated to evaporate the mobile phase. These interfaces allow the chromatograph and the mass spectrometer to operate independently. By depositing the analyte on a belt, the flow-rate and composition of the mobile phase can be altered without regard to a deterioration in the system s performance within practical limits. Both El and Cl spectra can be obtained. Moving-belt SFE-SFC-MS" has been described. [Pg.480]


See other pages where Beam-type mass spectrometer is mentioned: [Pg.172]    [Pg.847]    [Pg.850]    [Pg.158]    [Pg.371]    [Pg.172]    [Pg.847]    [Pg.850]    [Pg.158]    [Pg.371]    [Pg.631]    [Pg.118]    [Pg.316]    [Pg.631]    [Pg.325]    [Pg.54]    [Pg.77]    [Pg.166]    [Pg.876]    [Pg.163]    [Pg.541]    [Pg.547]    [Pg.86]    [Pg.179]    [Pg.871]    [Pg.29]    [Pg.1003]    [Pg.351]    [Pg.361]    [Pg.368]    [Pg.397]    [Pg.506]    [Pg.26]    [Pg.348]    [Pg.358]    [Pg.57]    [Pg.332]   
See also in sourсe #XX -- [ Pg.172 , Pg.173 , Pg.176 ]




SEARCH



Mass spectrometer types

Mass type

Spectrometers types

© 2024 chempedia.info