Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphine catalysts Baylis-Hillman reactions

Apart from tertiary amines, the reaction may be catalyzed by phosphines, e.g. tri- -butylphosphine or by diethylaluminium iodide." When a chiral catalyst, such as quinuclidin-3-ol 8 is used in enantiomerically enriched form, an asymmetric Baylis-Hillman reaction is possible. In the reaction of ethyl vinyl ketone with an aromatic aldehyde in the presence of one enantiomer of a chiral 3-(hydroxybenzyl)-pyrrolizidine as base, the coupling product has been obtained in enantiomeric excess of up to 70%, e.g. 11 from 9 - -10 ... [Pg.29]

P-Amino carbonyl compounds containing an a-atkyUdene group are densely functionalized materials, which are widely applied in the synthesis of medicinal reagents and natural products [265]. These products are usually prepared through the classic aza-Morita-Baylis-Hillman reaction [176, 177] of activated imines and electron-deficient alkenes catalyzed by tertiary amines or phosphines. Chen and co-workers, in 2008, identified bis-thiourea 106 as a suitable catalyst for the... [Pg.250]

A study of the effect of the Michael acceptor configuration on the efficiency of intramolecular Morita-Baylis-Hillman reactions has been performed. Enones containing a pendant aldehyde moiety attached at the -position of the alkene group were employed as substrates and the reactions were catalysed by a phosphine. In all cases examined, with Ph3P as the catalyst, cyclization of (Z)-alkene (117) gave 2.5-8.5 times higher yield than with the E-isomer (115) under identical reaction conditions, both affording the same product (116). Steric effects are believed to be the source of this difference in reactivity.172... [Pg.350]

An NMR kinetic study of a phosphine-catalysed aza-Baylis-Hillman reaction of but-3-enone with arylidene-tosylamides showed rate-limiting proton transfer in the absence of added protic species, but no autocatalysis.175 Brpnsted acids accelerate the elimination step. Study of the effects of BINOL-phosphinoyl catalysts sheds light not only on the potential for enantioselection with such bifunctional catalysis, but also on their scope for catalysing racemization. [Pg.21]

Studies on catalytic asymmetric aza-Baylis-Hillman reaction has shown that the reaction involves rate-limiting proton transfer in the absence of added protic species, but exhibits no autocatalysis.41 Brpnsted acidic additives lead to substantial rate enhancements through acceleration of the elimination step. Furthermore, it has been found that phosphine catalysts, either alone or in combination with protic additives, can cause racemization of the aza-Baylis-Hillman product by proton exchange at the stereogenic centre. [Pg.256]

Michael-aldol reaction as an alternative to the Morita-Baylis-Hillman reaction 14 recent results in conjugate addition of nitroalkanes to electron-poor alkenes 15 asymmetric cyclopropanation of chiral (l-phosphoryl)vinyl sulfoxides 16 synthetic methodology using tertiary phosphines as nucleophilic catalysts in combination with allenoates or 2-alkynoates 17 recent advances in the transition metal-catalysed asymmetric hydrosilylation of ketones, imines, and electrophilic C=C bonds 18 Michael additions catalysed by transition metals and lanthanide species 19 recent progress in asymmetric organocatalysis, including the aldol reaction, Mannich reaction, Michael addition, cycloadditions, allylation, epoxidation, and phase-transfer catalysis 20 and nucleophilic phosphine organocatalysis.21... [Pg.288]

Selenium-containing six-membered ring heterocycles have proved to be useful catalysts in a variety of transformations. The Baylis-Hillman reaction involves the reaction of alkenes containing electron-withdrawing groups such as a,/3-unsaturated carbonyl compounds with aldehydes leading to carbon-carbon bond formation (Equation 79). The reaction is promoted by tertiary amines such as l,4-diazabicyclo[2.2.2]octane (DABCO), or tertiary phosphines and Lewis acids. Unfortunately, the Baylis-Hillman reaction is severely limited because it proceeds only very slowly <1998CC197>. Much research has been carried out in attempts to increase the rate of this reaction. [Pg.993]

Asymmetric organocatalytic Morita-Baylis-Hillman reactions offer synthetically viable alternatives to metal-complex-mediated reactions. The reaction is best mediated with a combination of nucleophilic tertiary amine/phosphine catalysts, and mild Bronsted acid co-catalysts usually, bifunctional chiral catalysts having both nucleophilic Lewis base and Bronsted acid site were seen to be the most efficient. Although many important factors governing the reactions were identified, our present understanding of the basic factors, and the control of reactivity and selectivity remains incomplete. Whilst substrate dependency is still considered to be an important issue, an increasing number of transformations are reaching the standards of current asymmetric reactions. [Pg.183]

A clean, high-yielding asymmetric Baylis-Hillman reaction has been reported employing Oppolzer s sultam, it couples acrylates with a variety of aldehydes at 0 °C, with >99% ee in all cases described. Another new, practical variant of the reaction employs a phosphine catalyst, and here the temperature effect is critical the rate increases in either direction from room temperature, with a dramatic improvement observed at 0 °C. This imusual observation is explained in terms of a temperatiue-dependent equthbrium between efficient and inefficient intermediates. [Pg.12]

In this subsection, we describe a couple of examples taken from the recent literature, in which the Baylis-Hillman reaction has been employed for the construction of new carbon-carbon bonds. The Baylis-Hillman reaction proceeds in a catalytic cycle propagated by a nucleophilic catalyst (584). The nucleophilic catalyst initiates the cycle by Michael addition to a double bond bearing an EWG (586 or 590). The carbon a to the EWG is acidic and may react with an electrophile. Finally, the nucleophilic catalyst is eliminated, completing the cycle (Scheme 122). The most frequently used catalysts are quinuclidine, DABCO, phosphines, thiopheno-lates, and selenophenolates. The reaction rate of a catalytic Baylis-Hillman reaction approaches a maximum at a certain temperature and declines upon further heating, as the equilibrium concentration of (587) becomes very small. In the first example, the electrophilic component of the reaction was immobilized on a solid phase and the nucleophile was in solution, while in the other example the situation was reversed (Scheme 122). [Pg.307]

Enolates, generated by Michael addition reactions of a,p-unsaturated esters or ketones, can add to aldehydes. If the Michael addition is carried out with a tertiary amine (or phosphine) then this is referred to as the Baylis-Hillman reaction. Typically, an amine such as l,4-diazabicyclo[2.2.2]octane (DABCO) is used. After the aldol reaction, the tertiary amine is eliminated and it can therefore be used as a catalyst (1.61). The reaction is somewhat slow (requiring several days), but rates may be enhanced with other amines such as quinuclidine or quinidine derivatives, the latter effecting asymmetric reaction with high levels of selectivity. ... [Pg.31]

The Morita-Baylis-Hillman reaction is, in general, a carbon-carbon bondforming reaction of an a,(3-unsaturated compound with an aldehyde mediated by an organic nucleophilic base resulting in the formation of an allylic alcohol. Morita reported the use of a phosphine as catalyst and Baylis and Hillman used a tertiary amine. Variation of the electrophile to electron-deficient alkenes in a Michael-Michael elimination sequence leads to homo- and heterodimerisation and is known as the Rauhut-Currier reaction. The electrophilic aldehyde could be substituted by an imine or derivative in the aza-Morita-Baylis-Hillman reaction. Recently, there has been an increase in the use of this reaction for the construction of many different targets using many different amine derived catalysts. Scheme 2.2 shows a general view of this reaction and the accepted mechanism. ... [Pg.10]

On the other hand, an axially chiral phosphine alcohol organocatalyst was successfully employed by Shi and Liu to promote the aza-Morita-Baylis-Hillman reaction between A -(arylmethylidene)arylsulfonamide and methyl vinyl ketone, providing the corresponding adducts in moderate to good yields (26-85%) and high enantioselectivities of up to 94% ee, when used at 10 mol % of catalyst loading in Furthermore, these authors have shown that the... [Pg.140]

The L-threonine-derived phosphine-sulfonamide (23) is one of the best catalysts for the enantioselective aza-Morita-Baylis-Hillman reaction. A DPT study has identified ( ) a key intramolecular N-H—O hydrogen-bonding interaction between the sulfonamide... [Pg.11]

The Morita-Baylis-Hillman or Baylis-Hillman reaction involves the reaction between an electrophile 1, usually a carbonyl containing compound such as an aldehyde, ketone, or imine, and an activated alkene 2 in the presence of a catalyst such as an amine or phosphine to deliver an a-methylene- 3-hydroxy carbonyl or a-methylene-p-amino carbonyl adduct 3. [Pg.350]

The cooperative effect of Brpnsted acid catalysts and thiourea catalysts has been noticed by the Shi group (Fig. 18) [74]. In their 2007 paper on chiral thiourea-phosphine catalyzed asymmetric aza-Morita-Baylis-Hillman reaction, Shi and co-workers described that when they used a freshly prepared 77-benzylidene-4-methylbenzenesulfonamide substrate, much lower yield and enantioselectivity of the aza-Morita-Baylis-Hillman product was obtained compared with their initial result when using a long-stored substrate. They subsequently found that the long-stored substrate contained a small amount of 4-methylbenzenesulfonamide and... [Pg.174]

M. Shi and Y.-L. Shi reported the synthesis and application of new bifunctional axially chiral (thio) urea-phosphine organocatalysts in the asymmetric aza-Morita-Baylis-Hillman (MBH) reaction [176, 177] of N-sulfonated imines with methyl vinyl ketone (MVK), phenyl vinyl ketone (PVK), ethyl vinyl ketone (EVK) or acrolein [316]. The design of the catalyst structure is based on axially chiral BINOL-derived phosphines [317, 318] that have already been successfully utilized as bifunctional catalysts in asymmetric aza-MBH reactions. The formal replacement of the hydrogen-bonding phenol group with a (thio)urea functionality led to catalysts 166-168 (Figure 6.51). [Pg.301]

The Morita-Baylis-Hillman (MBH) reaction is an important 100% atom economic transformation that allows the formation in one step of a flexible allylic alcohol motif. Efforts in this field have been directed recently to the solution of two problems to enhance the generally sluggish reaction rate and to achieve asymmetric catalytic versions. Scheme 1.15 gives the catalytic cycle of the MBH reaction. The catalyst is a highly nucleophilic tertiary amine, generally DABCO, or a tertiary phosphine, which adds to the oc,P-unsaturated electrophile in a 1,4 fashion to deliver an enolate that, in turn, adds to the aldehyde. A critical step is the proton transfer from the enolizable position to the oxygen atom this process is catalysed by an alcohol that plays the role of a proton shuttle between the two positions. Water has also been reported to strongly speed up the reaction at a well-defined concentration. Moreover, the... [Pg.22]

Contra-Peterson elimination also occurred in Morita-Baylis-Hillman-type reactions of 1-silylcyclopropene 101. Addition of the nucleophilic catalyst tris(2,4,6-trimethoxyphenyl)phosphine (TTMPP) at the 2-position of the alkene and condensation of the anion with an aldehyde led to 1,3-Brook rearrangement, with expulsion of the catalyst to regenerate the cyclopropene double bond in product 102. ... [Pg.423]

Kinetic measurements and theoretical studies have been combined to develop new highly active catalysts for the aza-Morita-Baylis-Hillman (aza-MBH) reaction of electronically or sterically deactivated substrates, namely, ArCH=NTs. The electron-rich phosphines ArjP (Ar=4-MeOC6H4,4-Mc2NC6H4,4-Bu C6H4, etc.) and the DBU analogues, such as (356), were particularly successful... [Pg.393]

The introduction of the activated allylic bromides and Morita-Baylis-Hillman acetates and carbonates pioneered the development of a number of phosphine-catalyzed reactions in subsequent years [45]. Interestingly, the asymmetric variant of this type of transformation only appeared in the literature seven years later. In 2010, Tang, Zhou, and coworkers disclosed a highly enantioselective intramolecular ylide [3-f2] annulation using spirobiindane-based phosphine catalyst 31 (Scheme 20.27). BINAP was found inactive in this reaction even at an elevated temperature (70°C). Notably, both optically active benzobicyclo[4.3.0] compounds 32 and 32 with three continuous stereogenic centers could be obtained as major products in high yields and stereoselectivities just by a choice of an additive [Ti(OPr )4], which can block the isomerization of the double bond [46]. [Pg.568]

The asymmetric allylic substitution reaction of Morita-Baylis-Hillman carbonates (226) with diphenyl phosphite in the presence of chiral multifunctional thiourea-phosphine catalyst (228) provided allylic phosphites (227) in high yields and with excellent enantioselectivities (Scheme 76). [Pg.285]


See other pages where Phosphine catalysts Baylis-Hillman reactions is mentioned: [Pg.265]    [Pg.318]    [Pg.214]    [Pg.48]    [Pg.268]    [Pg.795]    [Pg.299]    [Pg.712]    [Pg.419]    [Pg.327]    [Pg.146]    [Pg.172]    [Pg.117]    [Pg.1110]    [Pg.92]    [Pg.14]    [Pg.46]    [Pg.397]    [Pg.14]    [Pg.83]    [Pg.79]    [Pg.32]    [Pg.412]    [Pg.439]    [Pg.208]    [Pg.17]   
See also in sourсe #XX -- [ Pg.330 ]




SEARCH



Baylis-Hillman

Baylis-Hillman reaction

Baylis-Hillman reactions catalysts

Hillman

Phosphines reaction

Reactions phosphination

© 2024 chempedia.info