Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basicity Bond order

The systematic lUPAC nomenclature of compounds tries to characterize compounds by a unique name. The names are quite often not as compact as the trivial names, which are short and simple to memorize. In fact, the lUPAC name can be quite long and cumbersome. This is one reason why trivial names are still heavily used today. The basic aim of the lUPAC nomenclature is to describe particular parts of the structure (fi agments) in a systematic manner, with special expressions from a vocabulary of terms. Therefore, the systematic nomenclature can be, and is, used in database systems such as the Chemical Abstracts Service (see Section 5.4) as index for chemical structures. However, this notation does not directly allow the extraction of additional information about the molecule, such as bond orders or molecular weight. [Pg.21]

The Tersoff potential was designed specifically for the group 14 elements and extends the basic empirical bond-order model by including an angular term. The interaction energy between two atoms i and j using this potential is ... [Pg.263]

There are a number of different ways that the molecular graph can be conununicated between the computer and the end-user. One common representation is the connection table, of which there are various flavours, but most provide information about the atoms present in the molecule and their connectivity. The most basic connection tables simply indicate the atomic number of each atom and which atoms form each bond others may include information about the atom hybridisation state and the bond order. Hydrogens may be included or they may be imphed. In addition, information about the atomic coordinates (for the standard two-dimensional chemical drawing or for the three-dimensional conformation) can be included. The connection table for acetic acid in one of the most popular formats, the Molecular Design mol format [Dalby et al. 1992], is shown in Figure 12.3. [Pg.659]

Isothiazole-4,5-dicarboxylic acid, 3-phenyl-dimethyl ester synthesis, S, 150 Isothiazole-5-glyoxylic acid ethyl ester reduction, 6, 156 Isothiazole-4-mercurioacetate reactions, 6, 164 Isothiazole-5-mercurioacetate reactions, 6, 164 Isothiazoles, 6, I3I-I75 acidity, 6, 141 alkylation, 6, 148 aromaticity, S, 32 6, 144-145 basicity, 6, I4I biological activity, 6, 175 boiling points, 6, I43-I44, 144 bond fixation, 6, 145 bond orders, 6, I32-I34 calculated, 6, 133 bromination, S, 58 6, 147 charge densities, 6, 132-134 cycloaddition reactions, 6, 152 desulfurization, S, 75 6, 152 deuteration, S, 70... [Pg.683]

The same first-order replacements are seen when M is Mo or W, somewhat slower than in the case of Cr, but still much faster than for the hexacarbonyls. The rate increases with the pK of the inert ligand (N-N) and Fig. 9 shows the linear free-energy relation between log ki and pK . The relative orders would not have been expected on the basis of any 7t-bonding effects since increasing back-donation to CO would increase the M-C bond order. This increase in M-C bond order is supported by a decrease in Vco with increasing o-phenanthroline basicity. The same consideration applies for the pentacarbonyl halide anions where the first-order rates decrease (Cl > Br > I), unexpectedly as the halide polarizability increases. [Pg.42]

The effect of probe molecules on the 27A1 NMR has attracted some attention recently. In particular, the determination of the quadrupole coupling constant, Cq, is a sensitive means to learn more about the bonding situation at the aluminum in acid sites, and how it reflects the interaction with basic probe molecules. If one of the four oxygen atoms in an AIO4 tetrahedral coordination is protonated, as in a zeolitic acid site, the coordination is somewhat in between a trigonal and a tetrahedral A1 environment [232]. The protonated oxygen decreases its bond order to A1 to approximately half of its size compared to an unprotonated zeolite. [Pg.213]

It would be out of place to give a detailed review of the approximate SCF theory, as developed for 7r-electron systems, at this point. It is, however, necessary to explain the basic equations, and convenient to use a form in which only the charges and bond orders appear (McWeeny, 1956, 1964). The total 7r-electron energy E may then be written... [Pg.130]

Each carbon-carbon double bond is constructed from four electrons. In benzene, the electrons that create the apparent double bonds fall into two classes. Two of the electrons are localized between two carbon atoms, just as we have come to expect. The other two electrons that contribute to the apparent double bonds are, in contrast, delocalized over the entire molecule. Since there are three apparent double bonds, we have a total of six electrons that are delocalized over the six carbon atoms. Think of these as free-range electrons. Basically, each of the carbon-carbon bonds in benzene is a 1.5 bond (technically, we say that the bond order in benzene carbon-carbon bonds is 1.5). Hence, the two models for benzene employed above, though universally used in chemistry, leave something to be desired. Benzene is better thought of as a hybrid of the two. Chemists have struggled with ways to depict the reality of benzene better than the stractures A and B. The struggle has not been notably successful. [Pg.61]

The basic finding was that for chemisorption bonds, as for those in inorganic materials generally, bondlengths, D, and bond order, n, appear to be related by a Pauling-like expression [141] between an adsorbate X and the metal surface atoms M of the type... [Pg.38]

A mathematical analysis of all four isomeric thiadiazoles by the simple molecular orbital method has provided molecular diagrams of the free base and conjugate acid of each thiadiazole, with electron densities, bond orders, and free valencies. On this basis, predictions have been made concerning the reactivities of the six non-equivalent carbon atoms, the basicities of the nitrogen atoms, and the delocalization energies in these molecules. The 5-position in free 1,2,4-thiadiazole should possess maximum reactivity in nucleophilic substitution reactions. The treatment also accounts for the order of the polarographic half-wave potentials and the position of the absorption maxima in the ultraviolet region of the spectra of 1,2,4- and 1,3,4-thiadiazoles.4... [Pg.121]

Resonance Raman spectroscopy also allows an investigation of the kind of bonding in complexes in general. Whereas in the Raman spectra of tetrathiometalato complexes ([M (WS4)2]2- with M = Pt, Zn), the intensities /R of the v(MS) bands are basically given by /R [v(MSterm)] > 7R[v(MSbr)] (reason higher n bond order in MStenn), the preresonance and resonance Raman spectra can exhibit clear deviations from this rule. (In the interpretation of the spectra it should be kept in mind that v(MSterm) vibrations are more characteristic than v S ), e.g. v,(MSbr) also contains a clear vs(MStemi) component.23)... [Pg.576]


See other pages where Basicity Bond order is mentioned: [Pg.169]    [Pg.306]    [Pg.863]    [Pg.873]    [Pg.351]    [Pg.323]    [Pg.1013]    [Pg.63]    [Pg.33]    [Pg.34]    [Pg.504]    [Pg.485]    [Pg.247]    [Pg.120]    [Pg.74]    [Pg.91]    [Pg.426]    [Pg.683]    [Pg.220]    [Pg.231]    [Pg.95]    [Pg.130]    [Pg.1024]    [Pg.92]    [Pg.156]    [Pg.219]    [Pg.253]    [Pg.370]    [Pg.365]    [Pg.373]    [Pg.415]    [Pg.26]    [Pg.863]   
See also in sourсe #XX -- [ Pg.25 , Pg.30 ]




SEARCH



Bond Ordering

Bond order

Bond/bonding orders

Bonding basics

© 2024 chempedia.info