Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unusual bases

In the process of identifying the reaction products of the anticancer drug cis-DDP with DNA bases, unusually dark blue compounds were found, which were called platinum-pyrimidine-blues. Interestingly,... [Pg.421]

Several of the nucleotides in tRNAs have bases unusual for RNA. For example, the alanine-specifying tRNA has hypoxanthine, 1-methylhypoxan-thine, 1-methylguanine, 2-dimethylguanine, thymine (ribose-bound), dihydrouracil (three times), and pseudouracil (i//), i.e. uracil with ribose attached toC-5 instead of to nitrogen (twice). Other unusual bases often found in tRNAs... [Pg.121]

Phage Total length Remarks Mol weight Base Unusual bases Remarks ... [Pg.69]

Figure 16 shows observed and calculated VLE and LLE for the system benzene-water-ethanol. In this unusually fortunate case, predictions based on the binary data alone (dashed line) are in good agreement with the experimental ternary data. Several factors contribute to this good agreement VLE data for the mis-... [Pg.69]

Each of these tools has advantages and limitations. Ab initio methods involve intensive computation and therefore tend to be limited, for practical reasons of computer time, to smaller atoms, molecules, radicals, and ions. Their CPU time needs usually vary with basis set size (M) as at least M correlated methods require time proportional to at least M because they involve transformation of the atomic-orbital-based two-electron integrals to the molecular orbital basis. As computers continue to advance in power and memory size, and as theoretical methods and algorithms continue to improve, ab initio techniques will be applied to larger and more complex species. When dealing with systems in which qualitatively new electronic environments and/or new bonding types arise, or excited electronic states that are unusual, ab initio methods are essential. Semi-empirical or empirical methods would be of little use on systems whose electronic properties have not been included in the data base used to construct the parameters of such models. [Pg.519]

The 2,3-alkadienyl acetate 851 reacts with terminal alkynes to give the 2-alkynyl-1,3-diene derivative 852 without using Cul and a base. In the absence of other reactants, the terminal alkyne 853 is formed by an unusual elimination as an intermediate, which reacts further with 851 to give the dimer 854. Hydrogenolysis of 851 with formic acid affords the 2, 4-diene 855[524]. [Pg.406]

The product of this reaction a Lewis acid Lewis base complex called informally boron tnfluonde etherate may look unusual but it is a stable species with properties different from those of the reactants Its boiling point (126°C) for example is much higher than that of boron tnfluonde—a gas with a boiling point of — 100°C—and diethyl ether a liquid that boils at 34°C... [Pg.46]

Isolates from Indian tobacco Q obelia inflata L.), as a cmde mixture of bases, have been recognized as expectorants. The same (or similar) fractions were also used both in the treatment of asthma and as emetics. The principal alkaloid in T. inflata is lobeline (49), an optically active tertiary amine which, unusual among alkaloids, is reported to readily undergo mutarotation, a process normally associated with sugars. Interestingly, it appears that the aryl-bearing side chains in (49) are derived from phenylalanine (25, R = H) (40). [Pg.539]

Plasma fractionation is unusual in pharmaceutical manufacturing because it involves the processing of proteins and the preparation of multiple products from a single feedstock. A wide range of unit operations are utilized to accompHsh these tasks. They are Hsted in Table 3 some are common to a number of products and all must be closely integrated. The overall manufacturing operation can be represented as a set of individual product streams, each based on the processing of an intermediate product derived from a mainstream fractionation process (Fig. 1). [Pg.527]

Perovskites have the chemical formula ABO, where A is an 8- to 12-coordinated cation such as an alkaU or alkaline earth, and B is a small, octahedraHy coordinated high valence metal such as Ti, Zr, Nb, or Ta. Glass-ceramics based on perovskite crystals ate characteri2ed by their unusual dielectric and electrooptic properties. Examples include highly crystalline niobate glass-ceramics which exhibit nonlinear optical properties (12), as well as titanate and niobate glass-ceramics with very high dielectric constants (11,14). [Pg.325]

Within the scope of the original definition, a very wide variety of ionomers can be obtained by the introduction of acidic groups at molar concentrations below 10% into the important addition polymer families, followed by partial neutralization with metal cations or amines. Extensive studies have been reported, and useful reviews of the polymers have appeared (3—8). Despite the broad scope of the field and the unusual property combinations obtainable, commercial exploitation has been confined mainly to the original family based on ethylene copolymers. The reasons for this situation have been discussed (9). Within certain industries, such as flexible packaging, the word ionomer is understood to mean a copolymer of ethylene with methacrylic or acryhc acid, partly neutralized with sodium or zinc. [Pg.404]

An unusual slurry process which works well with sodium hydroxide is based on diffusion of the aqueous reagent into pellets of acid polymer (28). The concentration of ions in the Hquid phase is preferably two to four times the stoichiometric level, and the temperature is maintained at 50—100°C. [Pg.408]

Molybdenum, an unusually versatile alloying element, imparts numerous beneficial properties to irons and steels and to some alloy systems based on cobalt, nickel, or titanium. Comprehensive summaries of uses through 1948 (24) and 1980 (25) are available. [Pg.467]

Polycarbonates are an unusual and extremely useful class of polymers. The vast majority of polycarbonates are based on bisphenol A [80-05-7] (BPA) and sold under the trade names Lexan (GE), Makrolon (Bayer), CaUbre (Dow), and Panlite (Idemitsu). BPA polycarbonates [25037-45-0] having glass-transition temperatures in the range of 145—155°C, are widely regarded for optical clarity and exceptional impact resistance and ductiUty at room temperature and below. Other properties, such as modulus, dielectric strength, or tensile strength are comparable to other amorphous thermoplastics at similar temperatures below their respective glass-transition temperatures, T. Whereas below their Ts most amorphous polymers are stiff and britde, polycarbonates retain their ductiUty. [Pg.278]

Polycarbonates are prepared commercially by two processes Schotten-Baumaim reaction of phosgene (qv) and an aromatic diol in an amine-cataly2ed interfacial condensation reaction or via base-cataly2ed transesterification of a bisphenol with a monomeric carbonate. Important products are also based on polycarbonate in blends with other materials, copolymers, branched resins, flame-retardant compositions, foams (qv), and other materials (see Flame retardants). Polycarbonate is produced globally by several companies. Total manufacture is over 1 million tons aimuaHy. Polycarbonate is also the object of academic research studies, owing to its widespread utiUty and unusual properties. Interest in polycarbonates has steadily increased since 1984. Over 4500 pubflcations and over 9000 patents have appeared on polycarbonate. Japan has issued 5654 polycarbonate patents since 1984 Europe, 1348 United States, 777 Germany, 623 France, 30 and other countries, 231. [Pg.278]

Most polymeric Hquid crystals are based on stiff rod-like molecular units which are called calamitic mesogens. There are some unusual polymers (which are not discussed here) that contain flat disk-like molecular units called discotic mesogens in which the disks form columnar arrays like stacks of poker chips. [Pg.306]

The pyrazole ring is resistant to oxidation and reduction. Only ozonolysis, electrolytic oxidations, or strong base can cause ring fission. On photolysis, pyrazoles undergo an unusual rearrangement to yield imidazoles via cleavage of the N —N2 bond, followed by cyclization of the radical iatermediate to azirine (27). [Pg.310]

All l Polyglycosides. The alkyl polyglycosides (APGs) are unusual in offering a hydrophile based on natural, ie, sugar (qv), chemistry ... [Pg.252]


See other pages where Unusual bases is mentioned: [Pg.258]    [Pg.107]    [Pg.258]    [Pg.107]    [Pg.245]    [Pg.1502]    [Pg.1973]    [Pg.2834]    [Pg.329]    [Pg.555]    [Pg.114]    [Pg.34]    [Pg.128]    [Pg.252]    [Pg.545]    [Pg.221]    [Pg.282]    [Pg.333]    [Pg.334]    [Pg.335]    [Pg.262]    [Pg.438]    [Pg.89]    [Pg.254]    [Pg.255]    [Pg.419]    [Pg.46]    [Pg.455]    [Pg.75]    [Pg.176]    [Pg.304]    [Pg.373]    [Pg.526]    [Pg.524]    [Pg.238]   
See also in sourсe #XX -- [ Pg.431 ]




SEARCH



Nucleosides with unusual bases

© 2024 chempedia.info