Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Band zinc compounds

Fig. ir.1-151 Band structure of zinc selenide Tabletr.1-1 f1 Energy gaps of zinc compounds... [Pg.669]

When a plasma polymerized acetylene film on a steel substrate was reacted with the squalene-containing model rubber compound at 155°C for 15 min, a new band assigned to zinc stearate appeared near 1539 cm in the RAIR spectra... [Pg.256]

Commonly used II-VI compounds include zinc sulfide, zinc selenide, zinc telluride, cadmium sulfide, cadmium telluride, and mercury cadmium telluride. These materials are not as widely used as the III-V compounds, one reason being that it is difficult to achieve p-type doping. Mercury cadmium telluride is used extensively in military night sights, which detect in the 8-13 im spectral band (a similar material, platinum silicide, is being developed for that purpose). The major applications ofCVD II-VI compounds are found in photovoltaic and electroluminescent displays. [Pg.387]

Zinc sulfide, with its wide band gap of 3.66 eV, has been considered as an excellent electroluminescent (EL) material. The electroluminescence of ZnS has been used as a probe for unraveling the energetics at the ZnS/electrolyte interface and for possible application to display devices. Fan and Bard [127] examined the effect of temperature on EL of Al-doped self-activated ZnS single crystals in a persulfate-butyronitrile solution, as well as the time-resolved photoluminescence (PL) of the compound. Further [128], they investigated the PL and EL from single-crystal Mn-doped ZnS (ZnS Mn) centered at 580 nm. The PL was quenched by surface modification with U-treated poly(vinylferrocene). The effect of pH and temperature on the EL of ZnS Mn in aqueous and butyronitrile solutions upon reduction of per-oxydisulfate ion was also studied. EL of polycrystalline chemical vapor deposited (CVD) ZnS doped with Al, Cu-Al, and Mn was also observed with peaks at 430, 475, and 565 nm, respectively. High EL efficiency, comparable to that of singlecrystal ZnS, was found for the doped CVD polycrystalline ZnS. In all cases, the EL efficiency was about 0.2-0.3%. [Pg.237]

The absorption spectra of the silicon(IV) naphthalocyanines follows the pattern already seen with the analogous zinc(II) (Section 9.22.12.1.4) and aluminum(III) (Section 9.22.13.2) derivatives 354 the red band is shifted about 100 nm further to the red, with intensification. Bis(trihex-ylsiloxy)silicon(IV) naphthalocyanine has Amax(PhH) = 776 nm (e = 650,000 M-1 cm-1) and <1>A 0.35 (oxygen-saturated benzene).389 The solution is fluorescent (main emission at 780 nm, Tf 2.85 ns) the triplet energy (ca. 22 k cal mol-1) is a little less than the energy of the first singlet state of dioxygen, and the process (Equation (9)) is reversible (cf. compounds (40) and (41), Section 9.22.10.2). [Pg.992]

Some further discussion of the validity of these assignments is given in reference (13). Alternatives were considered and the only possible (not probable) alternative seemed to be a polymeric paraffinic species formed only when ethylene was in the presence of hydrogen. A careful search in the effluent from reaction of hydrogen with X failed to reveal the presence of any compounds other than ethane. Accordingly, we conclude that X is an intermediate of the form S—CH2—CH3 and the occurrence of the band at 2812 cm-1, assigned to an overtone, is strong evidence that S is a zinc ion. [Pg.28]

Polycrystalline GaN UV detectors have been realized with 15% quantum efficiency [4], This is about 1 /4 of the quantum efficiency obtained by crystalline devices. Available at a fixed price, however, their increased detection range may well compensate their lack in sensitivity. Furthermore, new semiconductor materials with a matching band gap appear as promising candidates for UV detection if the presumption of the crystallinity is given up. Titanium dioxide, zinc sulfide and zinc oxide have to be mentioned. The opto-electronic properties and also low-cost production processes for these compound semiconductors have already been investigated to some extent for solar cell applications [5]. [Pg.169]

The UV-Vis spectra of the polymers show signals in the regions of the Soret band (417 nm) and the Q-band (547,585 nm), a peak sphtting. Zinc porphyrin itself, along with the monomeric compounds, does not show such splitting. The... [Pg.77]

A number of works are devoted to the electrochemical preparation of ZnO, which may have application in photocatalysis, ceramics, piezoelectric transducers, chemical sensors, photovoltaics, and others. ZnO has the same band-gap energy as Ti02, and the oxygenation capacities for both compounds should be similar. Ya-maguchi et al. [155] prepared photoactive zinc oxide films by anodizing a zinc plate. Such films could decompose gaseous acetaldehyde with the aid of black lights. [Pg.737]

Porphyrin and its derivatives are well-known model compounds for photosynthetic processes that involve charge separation [87], A zinc porphyrin, a copper porphyrin, and a zinc phthalocyanine (Pc) are chosen and incorporated into PPV backbones. Four polymers are synthesized via the Heck polycondensation [88], The incorporation of these metal complex moieties in polymers XI to XIII is manifested by the appearance of Q bands from metalloporphyrin and zinc Pc... [Pg.293]

Silicon crystallizes in the diamond structure,16 which consists of two interpenetrating face-centered cubic lattices displaced from each other by one quarter of the body diagonal. In zinc blende semiconductors such as GaAs, the Ga and As atoms lie on separate sublattices, and thus the inversion symmetry of Si is lost in III-V binary compounds. This difference in their crystal structures underlies the disparate electronic properties of Si and GaAs. The energy band structure in... [Pg.98]

Active" ZDDP. Differential Infrared Spectroscopy (DIR) was used to determine the concentration of ZDDP in the used oil samples by measuring the absorbance of the P-O-C band at 1,000 cm 1. The ZDDP concentrations of the used oil samples were generally less than 0.05 mass percent (as zinc), which is substantially less than the nominal 0.12 mass percent in the fresh oils. There was no correlation between camshaft and lifter valve wear and amount of ZDDP remaining in the used oil. This result supports other observations that the decomposition of ZDDP results in other compounds which may also exhibit some antiwear properties. [Pg.261]

Table 1.1. Abundance of the metal in the earths s crust, optical band gap Es (d direct i indirect) [23,24], crystal structure and lattice parameters a and c [23,24], density, thermal conductivity k, thermal expansion coefficient at room temperature a [25-27], piezoelectric stress ea, e3i, eis and strain d33, dn, dig coefficients [28], electromechanical coupling factors IC33, ksi, fcis [29], static e(0) and optical e(oo) dielectric constants [23,30,31] (see also Sect. 3.3, Table 3.3), melting temperature of the compound Tm and of the metal Tm(metal), temperature Tvp at which the metal has a vapor pressure of 10 3 Pa, heat of formation AH per formula unit [32] of zinc oxide in comparison to other TCOs and to silicon... Table 1.1. Abundance of the metal in the earths s crust, optical band gap Es (d direct i indirect) [23,24], crystal structure and lattice parameters a and c [23,24], density, thermal conductivity k, thermal expansion coefficient at room temperature a [25-27], piezoelectric stress ea, e3i, eis and strain d33, dn, dig coefficients [28], electromechanical coupling factors IC33, ksi, fcis [29], static e(0) and optical e(oo) dielectric constants [23,30,31] (see also Sect. 3.3, Table 3.3), melting temperature of the compound Tm and of the metal Tm(metal), temperature Tvp at which the metal has a vapor pressure of 10 3 Pa, heat of formation AH per formula unit [32] of zinc oxide in comparison to other TCOs and to silicon...
In this chapter some of the presently known optical properties of zinc oxide are reviewed. In particular, the anisotropic dielectric functions (DFs) of ZnO and related compounds from the far-infrared (FIR) to the vacuum-ultraviolet (VUV) spectral range are studied. Thereupon, many fundamental physical parameters can be derived, such as the optical phonon-mode frequencies and their broadening values, the free-charge-carrier parameters, the static and high-frequency dielectric constants, the dispersion of the indices of refraction within the band-gap region, the fundamental and above-band-gap band-to-band transition energies and their excitonic contributions. [Pg.79]


See other pages where Band zinc compounds is mentioned: [Pg.1218]    [Pg.76]    [Pg.87]    [Pg.668]    [Pg.668]    [Pg.1488]    [Pg.130]    [Pg.65]    [Pg.103]    [Pg.167]    [Pg.235]    [Pg.137]    [Pg.1192]    [Pg.53]    [Pg.332]    [Pg.121]    [Pg.149]    [Pg.435]    [Pg.143]    [Pg.181]    [Pg.567]    [Pg.51]    [Pg.506]    [Pg.337]    [Pg.263]    [Pg.95]    [Pg.128]    [Pg.198]    [Pg.81]    [Pg.177]    [Pg.189]    [Pg.237]    [Pg.506]    [Pg.4]    [Pg.157]    [Pg.158]   
See also in sourсe #XX -- [ Pg.668 ]

See also in sourсe #XX -- [ Pg.668 ]




SEARCH



Zinc compounds

© 2024 chempedia.info