Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Balance nonlinear

Because of the extreme accuracy expected of many of these products, some include internal test weights which can be used to recaUbrate regularly and to adjust for nonlinearity. Some balances monitor changing conditions and initiate the recahbration procedure as needed. [Pg.328]

Nonlinear versus Linear Models If F, and k are constant, then Eq. (8-1) is an example of a linear differential equation model. In a linear equation, the output and input variables and their derivatives only appear to the first power. If the rate of reac tion were second order, then the resiilting dynamic mass balance woiild be ... [Pg.720]

A key featui-e of MPC is that a dynamic model of the pi ocess is used to pi-edict futui e values of the contmlled outputs. Thei-e is considei--able flexibihty concei-ning the choice of the dynamic model. Fof example, a physical model based on fifst principles (e.g., mass and energy balances) or an empirical model coiild be selected. Also, the empirical model could be a linear model (e.g., transfer function, step response model, or state space model) or a nonhnear model (e.g., neural net model). However, most industrial applications of MPC have relied on linear empirical models, which may include simple nonlinear transformations of process variables. [Pg.740]

Compute a new set of values of the T) tear variables by solving simultaneously the set of N energy-balance equations (13-72), which are nonlinear in the temperatures that determine the enthalpy values. When linearized by a Newton iterative procedure, a tridiagonal-matrix equation that is solved by the Thomas gorithm is obtained. If we set gj equal to Eq. (13-72), i.e., its residual, the hnearized equations to be solved simultaneously are... [Pg.1285]

One shortcoming of Schild analysis is an overemphasized use of the control dose-response curve (i.e., the accuracy of every DR value depends on the accuracy of the control EC o value). An alternative method utilizes nonlinear regression of the Gaddum equation (with visualization of the data with a Clark plot [10], named for A. J. Clark). This method, unlike Schild analysis, does not emphasize control pECS0, thereby giving a more balanced estimate of antagonist affinity. This method, first described by Lew and Angus [11], is robust and theoretically more sound than Schild analysis. On the other hand, it is not as visual. Schild analysis is rapid and intuitive, and can be used to detect nonequilibrium steady states in the system that can corrupt... [Pg.113]

Thus, the initial value of the initiator concentrations, [Il]° and [I2]°, are calculated with Equation 15, for given values of the initial loading, feed rates, temperature, and time for the main semi-batch step, and [M]° is fixed according to experimental data from the base case semi-batch step. The nonlinear differential equation for [M] in terms of [II] and [I2] is given by Equation 16. Equation 10, with a redefinition of terms, is the differential equation mass balance for [II] and [12]. In the finishing step, only one of the initiators would be added for residual monomer reduction. Thus, Qm = 0,... [Pg.317]

The basic scheme for the numerical solution is the same as that used for the 1 -D model, except that in this case the solid temperature field used to solve the DAE system for each monolith channel must be calculated from the three-dimensional solid-phase energy balance equation. The three-dimensional energy balance equation can be solved by a nonlinear finite element solver (such as ABAQUS) for the solid-phase temperature field while a nonlinear finite difference solver for the DAE system calculates the gas-phase temperature and... [Pg.14]

Fig. 9 Dependence of catalytic activity of MgO-supported catalysts containing cationic gold and (except in the most active catalyst) gold clusters for ethene hydrogenation at 760 Torr and 353 K (reactive mixture of He, ethene, and H2—ethene partial pressure, r ethene. 40 Torr Phydrogen. 160 Torr the balance He). Note the nonlinearity of the scale at the top [53]... Fig. 9 Dependence of catalytic activity of MgO-supported catalysts containing cationic gold and (except in the most active catalyst) gold clusters for ethene hydrogenation at 760 Torr and 353 K (reactive mixture of He, ethene, and H2—ethene partial pressure, r ethene. 40 Torr Phydrogen. 160 Torr the balance He). Note the nonlinearity of the scale at the top [53]...
The mathematical model then is a set of coupled, nonlinear, one dimensional, unsteady-state mass balances of the form... [Pg.172]

The IC50 can thus be accurately determined by fitting the concentration-response data to Equation (5.1) through nonlinear curve-fitting methods. Some investigators prefer to plot data in terms of % inhibition rather than fractional activity. Using the mass-balance relationships discussed above, we can easily recast Equation (5.1) as follows ... [Pg.114]

The most effective spectrophotometric procedures for pKa determination are based on the processing of whole absorption curves over a broad range of wavelengths, with data collected over a suitable range of pH. Most of the approaches are based on mass balance equations incorporating absorbance data (of solutions adjusted to various pH values) as dependent variables and equilibrium constants as parameters, refined by nonlinear least-squares refinement, using Gauss-Newton, Marquardt, or Simplex procedures [120-126,226],... [Pg.31]

In addition to revealing constants, Bjerrum curves are a valuable diagnostic tool that can indicate the presence of chemical impurities and electrode performance problems [165]. Difference curve analysis often provides the needed seed values for refinement of equilibrium constants by mass-balance-based nonlinear least squares [118]. [Pg.104]

To model this highly complex and nonlinear dynamics properly, we need the heat and mass balances. In classical control, however, we would replace them with a linearized model that is the sum of two functions in parallel ... [Pg.60]

The optimization can be carried out using nonlinear optimization techniques such as SQP (see Chapter 3). The nonlinear optimization has the problems of local optima if techniques such as SQP are used for the optimization. Constraints need to be added to the optimization in order that a mass balance can be maintained and the product specifications achieved. The optimization of the side-rectifier and side-stripper in a capital-energy trade-off determines the distribution of plates, the reflux ratios in the main and sidestream columns and condition of the feed. If a partitioned side-rectifier (Figure ll.lOd) or partitioned side-stripper (Figure 11.lid) is to be used, then the ratio of the vapor flowrates on each side of the partition can be used to fix the location of the partition across the column. The partition is located such that the ratio of areas on each side of the partition is the same as the optimized ratio of vapor flowrates on each side of the partition. However, the vapor split for the side-rectifier will only follow this ratio if the pressure drop on each side of the partition is the... [Pg.222]

The mass transfer coefficients may also be expressed in units of time-1 by multiplying by the appropriate compartmental volume term. Irreversible drug elimination from the tissue requires the addition of an expression to the differential equation that represents the subcompartment in which elimination occurs. For instance, hepatic drug elimination would be described by a linear or nonlinear expression added to the intracellular liver compartment mass balance equation since this compartment represents the hepatocytes. Formal elimination terms are given below for the simplified tissue models. [Pg.81]

One would notice that there are a number of nonlinearities in the above constraints, more specifically in the contaminant mass balances around a unit and the central storage vessel. The nonlinearities arise due to the fact that the outlet concentration of each contaminant may not necessarily be at its respective maximum. Unlike the single contaminant case where one could replace the outlet concentration with the maximum outlet concentration, in the multiple contaminant case the outlet concentration of each contaminant remains a variable. Furthermore, the concentration within the central storage vessel is always variable, since the contaminant mass and mass of water within the vessel changes each time a stream enters or exits the vessel. To deal with this situation the following procedure is considered. [Pg.134]

One would notice that there are a number of nonlinear terms in the above constraints, specifically in the contaminant balance constraints. The linearisation technique used to remove these nonlinearities is that proposed by Quesada and Grossman (1995), the general form of this linearization technique can be found in Appendix A. During the application of the model to the illustrative examples,... [Pg.160]

The first minor change to the mass balance constraints from the scheduling formulation is found in constraint (8.2), which defines the size of a batch. In the synthesis formulation, the batch size is determined by the optimal size of the processing unit. Due to this being a variable, constraint (8.2) is reformulated to reflect this and is given in constraint (8.59). The nonlinearity present in constraint (8.59) is linearised exactly using Glover transformation (1975) as presented in Chapter 4. [Pg.189]


See other pages where Balance nonlinear is mentioned: [Pg.216]    [Pg.66]    [Pg.163]    [Pg.189]    [Pg.216]    [Pg.66]    [Pg.163]    [Pg.189]    [Pg.1096]    [Pg.193]    [Pg.356]    [Pg.1282]    [Pg.1338]    [Pg.1539]    [Pg.497]    [Pg.6]    [Pg.538]    [Pg.452]    [Pg.394]    [Pg.312]    [Pg.196]    [Pg.294]    [Pg.62]    [Pg.49]    [Pg.258]    [Pg.156]    [Pg.154]    [Pg.276]    [Pg.543]    [Pg.85]    [Pg.96]    [Pg.146]    [Pg.60]    [Pg.167]    [Pg.266]    [Pg.48]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



© 2024 chempedia.info