Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bacteria respiratory chains

A wide variety of different cytochrome-linked electron-transfer systems is encountered in bacteria respiratory chains with oxygen, nitrate or sulphate as electron acceptors, fumarate reductase systems and light-driven cyclic electron-transfer systems (Fig. 3). All these systems are composed of several electron-transfer carriers, the nature of which varies considerably in different organisms. Electron carriers which are most common in bacterial electron-transfer systems are flavoproteins (dehydrogenases), quinones, non-heme iron centres, cytochromes and terminal oxidases and reductases. One common feature of all electron-transfer systems is that they are tightly incorporated in the cytoplasmic membrane. Another important general property of these systems is that electron transfer results in the translocation of protons from the cytoplasm into the external medium. Electron transfer therefore... [Pg.260]

The cytochromes are iron-containing hemoproteins in which the iron atom oscillates between Fe + and Fe + during oxidation and reduction. Except for cytochrome oxidase (previously described), they are classified as dehydrogenases. In the respiratory chain, they are involved as carriers of electrons from flavoproteins on the one hand to cytochrome oxidase on the other (Figure 12-4). Several identifiable cytochromes occur in the respiratory chain, ie, cytochromes b, Cp c, a, and (cytochrome oxidase). Cytochromes are also found in other locations, eg, the endoplasmic reticulum (cytochromes P450 and h, and in plant cells, bacteria, and yeasts. [Pg.88]

A naturally occurring phenazine of nonbacterial origin is the methano-phenazine (MP) (10) which has been isolated from the cytoplasmic membrane of Methanosarcina (Ms.) mazei Gol archaea. The structure, synthesis, properties, and function of this natural product will be discussed in detail since it is not only the first and so far the sole phenazine derivative from archaea, but also the first one that is acting as an electron carrier in a respiratory chain - a biologic function equivalent to that of ubiquinones in mitochondria and bacteria. [Pg.80]

Cytochrome bci is a multicomponent enzyme found in the inner mitochron-drial membrane of eukaryotes and in the plasma membrane of bacteria. The cytochrome bci complex functions as the middle component of the mitochondrial respiratory chain, coupling electron transfer between ubiquinone/ ubiquinol (see Figure 7.27) and cytochrome c. [Pg.388]

Proton gradients can be built up in various ways. A very unusual type is represented by bacteriorhodopsin (1), a light-driven proton pump that various bacteria use to produce energy. As with rhodopsin in the eye, the light-sensitive component used here is covalently bound retinal (see p. 358). In photosynthesis (see p. 130), reduced plastoquinone (QH2) transports protons, as well as electrons, through the membrane (Q cycle, 2). The formation of the proton gradient by the respiratory chain is also coupled to redox processes (see p. 140). In complex III, a Q,cycle is responsible for proton translocation (not shown). In cytochrome c oxidase (complex IV, 3), trans-... [Pg.126]

In addition to NAD and flavoproteins, three other types of electron-carrying molecules function in the respiratory chain a hydrophobic quinone (ubiquinone) and two different types of iron-containing proteins (cytochromes and iron-sulfur proteins). Ubiquinone (also called coenzyme Q, or simply Q) is a lipid-soluble ben-zoquinone with a long isoprenoid side chain (Fig. 19-2). The closely related compounds plastoquinone (of plant chloroplasts) and menaquinone (of bacteria) play roles analogous to that of ubiquinone, carrying electrons in membrane-associated electron-transfer chains. Ubiquinone can accept one electron to become the semi-quinone radical ( QH) or two electrons to form ubiquinol (QH2) (Fig. 19-2) and, like flavoprotein carriers, it can act at the junction between a two-electron donor and a one-electron acceptor. Because ubiquinone is both small and hydrophobic, it is freely diffusible within the lipid bilayer of the inner mitochondrial membrane and can shuttle reducing equivalents between other, less mobile electron carriers in the membrane. And because it carries both electrons and protons, it plays a central role in coupling electron flow to proton movement. [Pg.693]

Complex IV Cytochrome c to 02 In the final step of the respiratory chain, Complex IV, also called cytochrome oxidase, carries electrons from cytochrome c to molecular oxygen, reducing it to H20. Complex IV is a large enzyme (13 subunits Mr 204,000) of the inner mitochondrial membrane. Bacteria contain a form that is much simpler, with only three or four subunits, but still capable of catalyzing both electron transfer and proton pumping. Comparison of the mitochondrial and bacterial complexes suggests that three subunits are critical to the function (Fig. 19-13). [Pg.700]

This hypothesis presumes that early free-living prokaryotes had the enzymatic machinery for oxidative phosphorylation and predicts that their modern prokaryotic descendants must have respiratory chains closely similar to those of modern eukaryotes. They do. Aerobic bacteria carry out NAD-linked electron transfer from substrates to 02, coupled to the phosphorylation of cytosolic ADP. The dehydrogenases are located in the bacterial cytosol and the respiratory chain in the plasma membrane. The electron carriers are similar to some mitochondrial electron carriers (Fig. 19-33). They translocate protons outward across the plasma membrane as electrons are transferred to 02. Bacteria such as Escherichia coli have F0Fi complexes in their plasma membranes the F portion protrudes into the cytosol and catalyzes ATP synthesis from ADP and P, as protons flow back into the cell through the proton channel of F0. [Pg.721]

In purple photosynthetic bacteria, electrons return to P870+ from the quinones QA and QB via a cyclic pathway. When QB is reduced with two electrons, it picks up protons from the cytosol and diffuses to the cytochrome bct complex. Here it transfers one electron to an iron-sulfur protein and the other to a 6-type cytochrome and releases protons to the extracellular medium. The electron-transfer steps catalyzed by the cytochrome 6c, complex probably include a Q cycle similar to that catalyzed by complex III of the mitochondrial respiratory chain (see fig. 14.11). The c-type cytochrome that is reduced by the iron-sulfur protein in the cytochrome be, complex diffuses to the reaction center, where it either reduces P870+ directly or provides an electron to a bound cytochrome that reacts with P870+. In the Q cycle, four protons probably are pumped out of the cell for every two electrons that return to P870. This proton translocation creates an electrochemical potential gradient across the membrane. Protons move back into the cell through an ATP-synthase, driving the formation of ATP. [Pg.340]

These are hemoproteins that catalyze electron transfer through the reversible change in oxidation state of the heme iron.637 They are involved in the respiratory chain, and in a wide range of other processes such as photosynthesis and the nitrogen cycle. Over 50 cytochromes have been studied, notably cytochrome c, which is one of the best studied biological molecules. Bacteria in particular produce a wide range of cytochromes which currently are attracting much attention. [Pg.618]

The azurins are electron-transfer proteins in the respiratory chains of certain bacteria. They have been particularly well studied from Pseudomonas aeruginosa and other pseudomonads, and contain one type 1 copper bound to a single polypeptide chain of molecular weight about 16 000. Amino acid sequence data for a number of azurins show that about one third of residues are conserved. All contain three cysteine residues. Three are also sequence homologies with the plastocyanins. [Pg.651]

The biochemistry of the aerobic carbon monoxide-oxidizing bacteria is of considerable interest in that the respiratory chain is not sensitive to inhibition by CO, due, it is suggested, to the presence of a CO-insensitive o-type cytochrome functioning as a terminal oxidase.1037... [Pg.663]

For those investigated, PQQ-containing dehydrogenases require a divalent metal ion for activity, Mg in one case and Ca in all other cases (see Table 1). For some enzymes, Ca removal leads also to detachment of PQQ, providing an apo enzyme that can be easily reconstituted by addition of PQQ and Ca. For other enzymes, removal of the metal ion plus PQQ is not so easy, but fortunately several bacteria produce apoenzyme gratuitously as they are still able to produce the protein part of the dehydrogenase, but not PQQ (at least not under the laboratory conditions used for cultivation). Also in these cases, reconstitution to holo enzyme is easy, in vitro as well as in vivo the latter leads to active enzyme coupled to the respiratory chain. However, indications exist that a special protein is required for inserting Ca in the case of MDH [58],... [Pg.571]

HAO catalyzes the four-electron oxidation of hydroxylamine to nitrite. " It is present in autotrophic nitrifying bacteria, like Nitrosomonas, which are obligate chemolithotrophs that use the oxidation of ammonia as their sole energy source. For each cycle of hydroxylamine oxidation, two electrons are returned for the initial step of ammonia oxidation and the other two are either transferred to the terminal oxidase via the components of the respiratory chain, or used to generate NADH by reverse electron transport. [Pg.5565]

In H. halobium, both the respiratory chain [3] and bacteriorhodopsin [4-6] are shown to operate as A/iH+ generators, extruding H ions from the cell at the expense of the oxidation and light energies, respectively. It is not clear whether halobacteria possess the A/iNa+ motive respiration discovered recently in many marine bacteria (for reviews, see refs. [7,8]). [Pg.24]

The nature of the second proton-pumping complex in each membrane is dependent on the primary energy source utilized by the organelle. In the case of mitochondria or respiring bacteria a respiratory chain (also called an electron-transfer chain) transfers electrons from a donor substrate to an acceptor, often oxygen, at... [Pg.29]

Several observations made in whole membranes or in the isolated complexes are in line with these concepts the shifts induced by antimycin A [110,137] and myxothiazol on the absorption spectra of cytochromes b and the alterations of the ESR spectrum of the FeS protein by UHDBT or DBMIB [131]. Moreover, the oxidant-induced reduction of cytochromes b, the key observation for accepting these electron transfer schemes, has been demonstrated in all h/c, complexes isolated so far from mitochondria [134], chloroplasts [111], cyanobacteria [112] and photosynthetic bacteria [110]. In the chloroplast b /f complex this reaction has been demonstrated also in the absence of any exogenously added quinol, indicating that possibly a structurally bound quinone (quinone is always present in the isolated complexes with a stoicheiometry of about 0.5-0.7 mol/mol of cyt. c, [110,111]) is sufficient to drive the reduction of cytochromes [138]. Since a detailed treatment of the genera] mechanism, as well as of the more specific problems of the mitochondrial respiratory chain, are reported in Chapter 3 of this volume, the following discussion will deal only with the specific features of the electron transfer chains in photosynthetic membranes. [Pg.122]


See other pages where Bacteria respiratory chains is mentioned: [Pg.129]    [Pg.77]    [Pg.33]    [Pg.67]    [Pg.533]    [Pg.210]    [Pg.613]    [Pg.252]    [Pg.518]    [Pg.429]    [Pg.120]    [Pg.125]    [Pg.602]    [Pg.959]    [Pg.623]    [Pg.177]    [Pg.348]    [Pg.238]    [Pg.239]    [Pg.576]    [Pg.16]    [Pg.47]    [Pg.170]    [Pg.320]    [Pg.72]    [Pg.109]    [Pg.1887]    [Pg.2098]    [Pg.3873]    [Pg.5403]    [Pg.5541]    [Pg.1703]    [Pg.95]   


SEARCH



Purple bacteria respiratory chain

Respiratory chain

© 2024 chempedia.info