Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Purple bacteria respiratory chain

In contrast to common usage, the distinction between photosynthetic and respiratory Rieske proteins does not seem to make sense. The mitochondrial Rieske protein is closely related to that of photosynthetic purple bacteria, which represent the endosymbiotic ancestors of mitochondria (for a review, see also (99)). Moreover, during its evolution Rieske s protein appears to have existed prior to photosynthesis (100, 101), and the photosynthetic chain was probably built around a preexisting cytochrome be complex (99). The evolution of Rieske proteins from photosynthetic electron transport chains is therefore intricately intertwined with that of respiration, and a discussion of the photosynthetic representatives necessarily has to include excursions into nonphotosynthetic systems. [Pg.347]

In purple photosynthetic bacteria, electrons return to P870+ from the quinones QA and QB via a cyclic pathway. When QB is reduced with two electrons, it picks up protons from the cytosol and diffuses to the cytochrome bct complex. Here it transfers one electron to an iron-sulfur protein and the other to a 6-type cytochrome and releases protons to the extracellular medium. The electron-transfer steps catalyzed by the cytochrome 6c, complex probably include a Q cycle similar to that catalyzed by complex III of the mitochondrial respiratory chain (see fig. 14.11). The c-type cytochrome that is reduced by the iron-sulfur protein in the cytochrome be, complex diffuses to the reaction center, where it either reduces P870+ directly or provides an electron to a bound cytochrome that reacts with P870+. In the Q cycle, four protons probably are pumped out of the cell for every two electrons that return to P870. This proton translocation creates an electrochemical potential gradient across the membrane. Protons move back into the cell through an ATP-synthase, driving the formation of ATP. [Pg.340]

It could be that the break between respiration and photosynthesis in these bacteria is more recent than we think. Cytochrome Ca has been suggested to have a respiratory as well as a photosynthetic role in R. spheroides (S72) and R. capsulata (372a-c) and no alternative respiratory chain has yet been identified in any of the Athiorhodaceae. In some of these organisms a situation may exist as in Fig. 46 with electrons flowing to both from light-excited bacteriochlorophyll and from external donors, and then from c either to an electron-depleted bacteriochlorophyll or to an oxidase molecule. This would account for the observed control mechanism in the purple nonsulfur bacteria. Under aerobic conditions in the dark, bacteriochlorophyll would not be electron-defi.cient, whereas the oxidase would be in its oxidized state and capable of accepting electrons from c. Under anaerobic conditions, electrons would reduce the oxidase, and further electron transfer down that path would be blocked. Light then would promote electrons away from bacteriochlorophyll and set cyclic photophosphorylation in motion. [Pg.541]

According to the endosymbiontic hypothesis mitochondria derive from ancestors that are closely related to modern purple bacteria, for example, Pseudomonas, Rhodobacter, and Paracoccus. Although mitochondria are embedded in a cellular environment with narrowly controlled conditions regarding pH, redox balance, and substrate availability, bacteria may encounter a variety of environmental conditions. A repertoire of respiratory chains and regulatory mechanisms as opposed to a single electron transfer chain allows them to cope with a variety of environments. [Pg.352]


See other pages where Purple bacteria respiratory chain is mentioned: [Pg.252]    [Pg.170]    [Pg.75]    [Pg.3873]    [Pg.95]    [Pg.510]    [Pg.542]    [Pg.545]    [Pg.3872]    [Pg.102]    [Pg.1690]    [Pg.510]   
See also in sourсe #XX -- [ Pg.351 , Pg.352 , Pg.353 , Pg.354 , Pg.355 , Pg.356 , Pg.357 , Pg.358 , Pg.359 , Pg.360 , Pg.361 ]




SEARCH



Bacteria respiratory chains

Purple

Purple bacteria

Respiratory chain

© 2024 chempedia.info