Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Background Zeeman

In the previous section it has been shown that the measured sample absorbance may be higher than the true absorbance signal of the analyte to be determined. This elevated absorbance value can occur by molecular absorption or by light scattering. There are three techniques that can be used for background correction the deuterium arc the Zeeman effect and the Smith-Hieftje system. [Pg.795]

In practice, the emission line is split into three peaks by the magnetic field. The polariser is then used to isolate the central line which measures the absorption Ax, which also includes absorption of radiation by the analyte. The polariser is then rotated and the absorption of the background Aa is measured. The analyte absorption is given by An — Aa. A detailed discussion of the application of the Zeeman effect in atomic absorption is given in Ref. 51. [Pg.796]

All instruments should be equipped with a background correction facility. Virtually all instruments now have a deuterium arc background correction. The Zeeman system is also available in instruments marketed by the Perkin-Elmer Corporation and the Smith-Hieftje system by Thermo Electron Ltd. [Pg.799]

The influence of matrix concomitants often cannot be recognised or quantified. Progress in background correction techniques (e.g. direct Zeeman-AAS [218]), furnace techniques, microweighing, and electronic signal processing have gradually made possible the elimination... [Pg.625]

Ellen G, Van Loon JW. 1990. Determination of cadmium and lead in foods by graphite furnace atomic absorption spectrometry with Zeeman background correction Test with certified reference materials. Food Addit Contam 7 265-273. [Pg.511]

Chapters 5 and 6 discuss the application of new techniques such as atomic absorption spectrometry with and without graphite furnace and Zeeman background correction, inductively coupled plasma mass spectrometry, X-ray fluo-... [Pg.4]

Many of the published methods for the determination of metals in seawater are concerned with the determination of a single element. Single-element methods are discussed firstly in Sects. 5.2-5.73. However, much of the published work is concerned not only with the determination of a single element but with the determination of groups of elements (Sect. 5.74). This is particularly so in the case of techniques such as graphite furnace atomic absorption spectrometry, Zeeman background-corrected atomic absorption spectrometry, and inductively coupled plasma spectrometry. This also applies to other techniques, such as voltammetry, polarography, neutron activation analysis, X-ray fluroescence spectroscopy, and isotope dilution techniques. [Pg.128]

Pruszkowska et al. [135] described a simple and direct method for the determination of cadmium in coastal water utilizing a platform graphite furnace and Zeeman background correction. The furnace conditions are summarised in Table 5.1. These workers obtained a detection limit of 0.013 pg/1 in 12 pi samples, or about 0.16 pg cadmium in the coastal seawater sample. The characteristic integrated amount was 0.35 pg cadmium per 0.0044 A s. A matrix modifier containing di-ammonium hydrogen phosphate and nitric acid was used. Concentrations of cadmium in coastal seawater were calculated directly from a calibration curve. Standards contained sodium chloride and the same matrix modifier as the samples. No interference from the matrix was observed. [Pg.148]

It was also shown that 2% nitric acid reduced the background to a level that can be handled by the Zeeman correction system. From 4% to 8% nitric acid, the changes in background signal shapes were not very large. [Pg.150]

Three Zeeman-based methods for the determination of cadmium in seawater were investigated. Direct determinations can be made with or without the use of a pyrolytic platform atomisation technique. The wall atomisation methods presented were considerably faster than the platform atomisation technique. For extremely low levels of cadmium, indirect methods of analysis employing a preliminary analyte extraction can be employed. Background levels are minimal in extracted samples, and the total furnace programme time was the lowest of the methods examined. [Pg.151]

Lum and Callaghan [ 140 ] did not use matrix modification in the electother-mal atomic absorption spectrophotometric determination of cadmium in seawater. The undiluted seawater was analysed directly with the aid of Zeeman effect background correction. The limit of detection was 2 ng/1. [Pg.151]

Electrothermal atomic absorption spectrophotometry with Zeeman background correction was used by Zhang et al. [141] for the determination of cadmium in seawater. Citric acid was used as an organic matrix modifier and was found to be more effective than EDTA or ascorbic acid. The organic matrix modifier reduced the interferences from salts and other trace metals and gave a linear calibration curve for cadmium at concentrations < 1.6 pg/1. The method has a limit of detection of 0.019 pg/1 of cadmium and recoveries of 95-105% at the 0.2 pg of cadmium level. [Pg.151]

Graphite furnace atomic absorption spectrometry with the L vov platform and Zeeman background correction has been applied to the determination of down to 0.02 xg/l manganese in seawater [452]. [Pg.196]

The need for improved background correction performance has generated considerable interest in applying the Zeeman effect, where the atomic spectral line is split into several polarised components by the application of a magnetic field. With a Zeeman effect instrument background correction is performed at, or very close to, the analyte wavelength without the need for auxiliary light sources. An additional benefit is that double-beam operation is achieved with a very simple optical system. [Pg.248]

Grobenski et al. [709] have reviewed methodology for the determination of these elements in seawater. Zeeman-effect background correction using an AC magnet around the graphite furnace corrects for nonspecific attenuation up to 2.0 absorbance and corrects for structured background. [Pg.249]

Maximum power heating, the L vov platform, gas stop, the smallest possible temperature step between thermal pretreatment and atomisation, peak area integration, and matrix modification have been applied in order to eliminate or at least reduce interferences in graphite furnace AAS. With Zeeman effect background correction, much better correction is achieved, making method development and trace metal determinations in samples containing high salt concentrations much simpler or even possible at all. [Pg.250]

Cabon and Le Bihan [711] studied the effects of transverse heated AAS and longitudinal Zeeman effect background correction in sub xg/l determination of chromium, copper, and manganese in seawater samples. [Pg.250]

Knowles M (1987) Varian atomic absorption no AA 71 methods for the determination of cadmium in seawater with Zeeman background correction... [Pg.309]

Zong, Y. Y., Parsons, P. J., and Slavin, W. (1998). Background correction errors for lead in the presence of phosphate with Zeeman graphite furnace atomic absorption spectrometry. Spectrochimica Acta B 53 1031-1039. [Pg.390]

In the method described by Willie et al. [167] atomic absorption measurements were made with a Perkin-Elmer 5000 spectrometer fitted with a Model HGA 500 graphite furnace and Zeeman effect background correction system. Peak absorbance signals were recorded with a Perkin-Elmer PRS-10 printer-sequencer. A selenium electrodeless lamp (Perkin-Elmer Corp.) operated at 6W was used as the source. Absorption was measured at the 196.0nm line. The spectral band-pass was 0.7nm. Standard Perkin-Elmer pyrolytic graphite-coated tubes were used in all studies. [Pg.366]


See other pages where Background Zeeman is mentioned: [Pg.134]    [Pg.35]    [Pg.795]    [Pg.796]    [Pg.262]    [Pg.263]    [Pg.35]    [Pg.36]    [Pg.607]    [Pg.611]    [Pg.626]    [Pg.761]    [Pg.443]    [Pg.149]    [Pg.149]    [Pg.157]    [Pg.196]    [Pg.197]    [Pg.248]    [Pg.249]    [Pg.371]    [Pg.376]    [Pg.434]    [Pg.435]    [Pg.435]    [Pg.325]    [Pg.246]    [Pg.261]    [Pg.273]   
See also in sourсe #XX -- [ Pg.458 ]




SEARCH



Zeeman

© 2024 chempedia.info