Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azobis , preparation radicals with

In this section, we review the properties of a series of PNIPAM-b-PEO copolymers with PEO blocks of varying length, with respect to the PNIPAM block. Key features of their solutions will be compared with those of PNIPAM-g-PEO solutions. PNIPAM-b-PEO copolymers were prepared by free-radical polymerisation of NIPAM initiated by macroazoinitiators having PEO chains linked symmetrically at each end of a 2,2/-azobis(isobutyronitrile) derivative [169,170]. The polydispersities of PEOs were low, enabling calculations of the number-average molar mass for each PNIPAM block from analysis of their H-NMR spectra (Table 2). [Pg.43]

Gels are prepared by free-radical bulk copolymerization. The comonomers (n-AMA and DMA at a specified molar ratio) are injected along with the crosslinker (DVB 0.1% w/w) and the initiator [2,2 -azobis(isobutyronitrile) (0.5% w/w)] between two glass plates. The glass is previously silanized by immersion for two days in a solution of dichlorodimethylsilane (2% v/v) in toluene. The plates are separated by Teflon spacers of specified thickness, and the whole assembly is held together by metal damps. Polymerization is accomplished by incubating the assembly in the vertical position under argon at 60 °C for 18 h. [Pg.237]

Physical entrapment or chemical coupling is a well-established procedure for MIP preparation. First, a complex is formed between a functional monomer and template in an appropriate solvent solution. Then the complex is immobilized by polymerization in excess of a cross-linker. Predominantly, free-radical polymerization thermally launched with a 2,2-azobis(isobutyronitrile) (AIBN) initiator, is performed. In the case of photo-radical polymerization, a benzophenone or acetopho-none derivative is also used as the initiator [101]. Next, the template is extracted by rinsing the resulting MIP block with a suitably selected solvent solution. The bulk... [Pg.213]

MIP films, applied to a QCM transducer, have been employed for chiral recognition of the R- and 5-propranolol enantiomers [107]. MIP films were prepared for that purpose by surface grafted photo-radical polymerization. First, a monolayer of 11-mercaptoundecanoic acid was self-assembled on a gold electrode of the quartz resonator. Then, a 2,2 -azobis(2-amidinopropane) hydrochloride initiator (AAPH), was attached to this monolayer. Subsequently, this surface-modified resonator was immersed in an ACN solution containing the MAA functional monomer, enantiomer template and trimethylolpropane trimethacrylate (TRIM) cross-linker. Next, the solution was irradiated with UV light for photopolymerization. The resulting MIP-coated resonator was used for enantioselective determination of the propranolol enantiomers under the batch [107] conditions and the FIA [107] conditions with an aqueous-ACN mixed solvent solution as the carrier. The MIP-QCM chemosensor was enantioselective to 5-propranolol at concentrations exceeding 0.38 mM [107]. [Pg.226]

Methyl(chloromethyl)dichlorosilane is prepared by chlorinating di-methyldichlorosilane with free chlorine in the presence of radical initiators, such as the dinitrile of 2,2 -azobis(isobutyric) acid. [Pg.84]

Living anionic polymerization of methacrylates and acrylates can be used to prepare macromonomers, which can thereafter be polymerized by any technique known in the state of the art. For instance, Flatada and coworkers reacted anionic ft)-hydroxyl-PMMA (55), which was then polymerized by radical polymerization into the corresponding combshaped copolymer (81) with 2,2 -azobis(isobutyronitrile) (AIBN) as initiator (equation 64). ... [Pg.869]

A multistep reaction pathway leads to polymers 43 and 44 with phosphatidylcholine moieties in the main chain and long alkyl groups in the side chain [122]. These polymers exhibit thermotropic liquid-crystalline behavior. Polyamides 45 were obtained by interfacial polycondensation they are insoluble in any normal solvent [123]. Poly-MPC capped with cholesteryl moieties at one or both polymer ends was prepared by the radical polymerization of MFC initiated with 4,4 -azobis[(3-cholesteryl)-4-cyanopentanoate] in the presence of a chain transfer agent [124]. The self-organization of these polymers was analyzed with fluorescence and NMR measurements. [Pg.174]

The photoreduction of aromatic ketones by polymeric systems having tertiary amine end groups provides an ele nt way for the preparation of block copolymers with high efficiency [138]. The method consists of the synthesis of the bifimctional azo-derivative 4,4 -azobis (iV,i -dimethylaminoethyl-4-cyano pentanoate) (ADCP), successively used as fiee radical thermal initiator for the preparation of tertiary amine-terminated poly(styrene). [Pg.194]

The MIP is usually prepared as a highly cross-linked, rigid bulk polymer and the polymerisation reaction is initiated by photo- or thermo-labile free radical initiators such as 2,2 -azobis(isobutyronitrile). For molecular imprint-based CEC systems, the introduction of the imprinted polymer into the capillary column has been focused on and several approaches have been developed (see below). The polymerisation process can be performed in between 1 and 24 h. It has been shown that the temperature during the polymerisation process is important. A lower temperature leads to imprinted polymers with higher selectivity [47] or better chromatographic performance [39]. [Pg.381]

The methyl methacrylate-itaconic acid copolymer, P(MMA-co-ItaA), was prepared by slow free-radical solution polymerization in methanol under nitrogen using 2,2 -azobis-(2,4-dimethyl valeronitrile)(du Pont Vazo 52) as initiator. The molar ratio of monomer to initiator was in the range of 5xl03 to 10xl03. Reaction at 50°C for 30 to 40 hrs gave conversions of 10 to 30%. The reaction mixture was added to cold, deionized water and the precipitated polymer obtained was rinsed with 2-propanol. [Pg.122]

Functional initiators have also been used for the synthesis of macromonomers by free radical processes. 2-2/-Azobis(N-N/-dimethylene isobutyramidine) was used to prepare imidazol terminated PS followed by an end-capping reaction with chloromethylstyrene [ 158]. A similar initiator was used for the radical polymerization of vinyl acetate (VAc) followed by reaction with chloromethylstyrene or methacryloyl chloride [159] (Scheme 47). [Pg.49]

The very first reported PHOST that is transparent in the DUV was prepared by thermolysis or acidolysis of PBOCST, which is in turn prepared via radical polymerization of the BOCST monomer by 2,2-azobis(butyronitrile) (AIBN), benzoyl peroxide (BPO), or other radical initiators. The BOCST monomer can be prepared by the Wittig reaction on a protected 4-hydroxybenzaldehyde with a rather high yield due to the good stability of the t-BOC group toward a base cata-lyst. " The PBOCST polymer thus obtained is readily converted to PHOST by heating the polymer to 200°C or by treating the polymer with an acid such as acetic acid or HCl in solution. And PBOCST can be synthesized via cationic polymerization in liquid sulfur dioxide. ... [Pg.350]

ABTS radical anions were used according to the method of (Kim et al., 2003). In brief, 1.0 mM of 2, 2 -azobis (2-amidino-propane) dihydrochloride (AAPH), a radical initiator, was mixed with 2.5 mM ABTS in phosphate-buffered saline (pH 7.4) and the mixed solution was heated in a water bath at 68 °C for 13 min. The resulting blue-green ABTS solution was adjusted to the absorbance of 0.650 + 0.020 at 734 nm with additional phosphate-buffered saline. 20 il of sample were added to 980 (iL of the ABTS radical solution. The mixture incubated in a 37°C water bath under restricted light for 10 min. A control (20 iL 50% methanol and 980 mL of ABTS radical solution) was run with each series of samples. The decrease of the absorbance at 734 nm was measured (Cary 50 Scan UV-Visible apparatus) at an endpoint after 10 min. Total antioxidant capacity of plant parts is expressed as mg / g of dry weight of vitamin C equivalents (VCEAC). The radical stock solution had to be freshly prepared and all measurements of the tested samples were repeated at least three times. [Pg.134]

NMP is based on the concept of a dynamic equilibration between dormant alkoxyamines and propagating radicals as shown in eqn [55].The choice of the persistent radical is cmcial for controlled polymerization. While styrene can be easily moderated by 2,2,6,6-tetramethyl-l-piperidinyloxy (TEMPO), other monomers required the development of nitroxides that contain hydrogen atoms at the a-C. There are two different initiation methods for NMP. Conventional radical initiators (i.e., AIBN, BPO) in conjunction with a persistent radical were initially used to prepare polymers by NMP, but these systems were limited in the choice of monomer. Functionality could be incorporated via a functionalized initiator or a functionalized persistent radical. For example, Baumert and Mulhaupt prepared carboxylic acid-terminated polystyrene, poly(styrene-co-acrylonitrile), and polystyrene-b-poly (styrene-co-acrylonitrile) by the use of the functionalized initiator 4,4 -azobis(4-cyanopentanecarboxylic acid). The polymerization was controlled by the addition of 2,2,6,6-tetramethyl-l-piperidyloxyl radical, and polymers with... [Pg.400]


See other pages where Azobis , preparation radicals with is mentioned: [Pg.254]    [Pg.6899]    [Pg.31]    [Pg.35]    [Pg.239]    [Pg.147]    [Pg.288]    [Pg.226]    [Pg.252]    [Pg.21]    [Pg.128]    [Pg.1571]    [Pg.377]    [Pg.1571]    [Pg.237]    [Pg.237]    [Pg.54]    [Pg.142]    [Pg.348]    [Pg.45]    [Pg.132]    [Pg.401]    [Pg.59]    [Pg.66]    [Pg.301]    [Pg.160]    [Pg.40]    [Pg.117]    [Pg.82]    [Pg.351]    [Pg.106]    [Pg.117]    [Pg.1005]    [Pg.1139]    [Pg.45]   
See also in sourсe #XX -- [ Pg.922 ]




SEARCH



Azobis

Azobis , preparation

Preparation with

© 2024 chempedia.info