Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic emission spectroscopy flame sources

A schematic diagram showing the disposition of these essential components for the different techniques is given in Fig. 21.3. The components included within the frame drawn in broken lines represent the apparatus required for flame emission spectroscopy. For atomic absorption spectroscopy and for atomic fluorescence spectroscopy there is the additional requirement of a resonance line source, In atomic absorption spectroscopy this source is placed in line with the detector, but in atomic fluorescence spectroscopy it is placed in a position at right angles to the detector as shown in the diagram. The essential components of the apparatus required for flame spectrophotometric techniques will be considered in detail in the following sections. [Pg.783]

In atomic emission spectroscopy, the radiation source is the sample itself. The energy for excitation of analyte atoms is supplied by a plasma, a flame, an oven, or an electric arc or spark. The signal is the measured intensity of the source at the wavelength of interest. In atomic absorption spectroscopy, the radiation source is usually a line source such as a hollow cathode lamp, and the signal is the absorbance. The latter is calculated from the radiant power of the source and the resulting power after the radiation has passed through the atomized sample. [Pg.1097]

Atomic spectroscopy can be divided into several broad classes based on the nature of the means of exciting the sample. One of these classes is generally known as atomic emission spectroscopy, in which excitation is thermally induced by exposing the sample to very high electric fields. Another class is known as flame emission spectroscopy or flame photometry, in which excitation is thermally induced by exposing the sample to a high-temperature flame. These methods differ from atomic absorption spectroscopy, in which the absorption of light from a radiation source by the atom is observed rather than the emission from the electronically excited atom. [Pg.402]

Absorption spectrophotometry Fluorescence methods Atomic-absorption methods Flame photometry Neutron activation analysis Emission spectroscopy Spark source mass spectrometry Reaction gas chromatography of chelates using electron-capture detection... [Pg.274]

Chavacteristic Neutron Activation Analysis X-Ray Fluorescence Emission Spectroscopy Flame Emission Atomic Absorption Spark Source Mass Spectrometry... [Pg.86]

Classical excitation sources in atomic emission spectroscopy do not meet these requirements. Flame, arc, and spark all suffer from poor stability, low reproducibility, and substantial matrix effects. However, the modem plasma excitation sources, especially ICPs, come very close to the specification of an ideal AES source. [Pg.155]

In atomic absorption spectroscopy the source radiation is modulated to create an ac signal at the detector. The detector is made to reject the dc signal from the flame and measure the modulated signal from the source. In this way, background emission from the flame and atomic emission from the analyte is discriminated against and prevented from causing an interference effect. [Pg.200]

Characteristic Neutron activation analysis X-Ray fluorescence Emission spectroscopy Flame emission Atomic absorption Spark source mass spectrometry... [Pg.61]

Use of glow-discharge and the related, but geometrically distinct, hoUow-cathode sources involves plasma-induced sputtering and excitation (93). Such sources are commonly employed as sources of resonance-line emission in atomic absorption spectroscopy. The analyte is vaporized in a flame at 2000—3400 K. Absorption of the plasma source light in the flame indicates the presence and amount of specific elements (86). [Pg.114]

Two colorimetric methods are recommended for boron analysis. One is the curcumin method, where the sample is acidified and evaporated after addition of curcumin reagent. A red product called rosocyanine remains it is dissolved in 95 wt % ethanol and measured photometrically. Nitrate concentrations >20 mg/L interfere with this method. Another colorimetric method is based upon the reaction between boron and carminic acid in concentrated sulfuric acid to form a bluish-red or blue product. Boron concentrations can also be deterrnined by atomic absorption spectroscopy with a nitrous oxide—acetjiene flame or graphite furnace. Atomic emission with an argon plasma source can also be used for boron measurement. [Pg.231]

As indicated in Fig. 21.3, for both atomic absorption spectroscopy and atomic fluorescence spectroscopy a resonance line source is required, and the most important of these is the hollow cathode lamp which is shown diagrammatically in Fig. 21.8. For any given determination the hollow cathode lamp used has an emitting cathode of the same element as that being studied in the flame. The cathode is in the form of a cylinder, and the electrodes are enclosed in a borosilicate or quartz envelope which contains an inert gas (neon or argon) at a pressure of approximately 5 torr. The application of a high potential across the electrodes causes a discharge which creates ions of the noble gas. These ions are accelerated to the cathode and, on collision, excite the cathode element to emission. Multi-element lamps are available in which the cathodes are made from alloys, but in these lamps the resonance line intensities of individual elements are somewhat reduced. [Pg.790]

A certain fraction of the atoms produced will become thermally excited and hence will not absorb radiation from an external source. These thermally excited atoms serve as the basis of flame photometry, or flame emission spectroscopy they can de-excite radiationally to emit radiant energy of a definite wavelength. [Pg.80]

Essentially the same spectrometer as is used in atomic absorption spectroscopy can also be used to record atomic emission data, simply by omitting the hollow cathode lamp as the source of the radiation. The excited atoms in the flame will then radiate, rather than absorb, and the intensity of the emission is measured via the monochromator and the photomultiplier detector. At the temperature achieved in the flame, however, very few of the atoms are in the excited state ( 10% for Cs, 0.1% for Ca), so the sample atoms are not normally sufficiently excited to give adequate emission intensity, except for the alkali metals (which are often equally well determined by emission as by absorption). Nevertheless, it can be useful in cases where elements are required for which no lamp is available, although some elements exhibit virtually no emission characteristics at these temperatures. [Pg.56]

Operating Principles — There are many similarities between ICP-AES and the combustion flame spectroscopy techniques of flame atomic emission (FAE) and flame atomic absorption (FAA). In fact, the source of the ICP-AES has been referred to by Fassel as an electric flame. The final prepared analytical sample is presented in liquid form for analysis except for unique situations. The liquid sample is drawn (or... [Pg.113]

In flame emission spectroscopy, light emission is caused by a thermal effect and not by a photon, as it is in atomic fluorescence. Flame emission, which is used solely for quantification, is distinguished from atomic emission, used for qualitative and quantitative analyses. This latter, more general term is reserved for a spectral method of analysis that uses high temperature thermal sources and a higher performance optical arrangement. [Pg.254]

Fundamental requirements for an atomic absorption experiment are shown in Figure 21-2. Principal differences between atomic and ordinary molecular spectroscopy lie in the light source (or lack of a light source in atomic emission), the sample container (the flame, furnace, or plasma), and the need to subtract background emission. [Pg.462]

It has been found, however, in practice that a perfectly straight analytical working curve (— log T plotted against concentration) is seldom obtained in atomic absorption spectroscopy. The reasons for this are usually a combination of instrumental problems broadening of the emission line of the light source due to self-reversal, Doppler and pressure broadening of the absorption lines of the atoms in the flame, failure to exclude flame emission entirely, use of a focused instead of a parallel... [Pg.4]


See other pages where Atomic emission spectroscopy flame sources is mentioned: [Pg.435]    [Pg.255]    [Pg.840]    [Pg.309]    [Pg.449]    [Pg.449]    [Pg.458]    [Pg.507]    [Pg.507]    [Pg.515]    [Pg.1720]    [Pg.199]    [Pg.1418]    [Pg.1387]    [Pg.1415]    [Pg.589]    [Pg.65]    [Pg.323]    [Pg.232]    [Pg.773]    [Pg.614]    [Pg.541]    [Pg.76]    [Pg.471]    [Pg.558]    [Pg.38]    [Pg.466]    [Pg.33]    [Pg.67]    [Pg.65]    [Pg.205]    [Pg.232]   
See also in sourсe #XX -- [ Pg.435 ]




SEARCH



Atomic emission

Atomic emission spectroscopy

Atomic emission spectroscopy sources

Atomic sources

Atomic spectroscopy

Atoms sources

Emission spectroscopy)

Emissivity flames

Flame Emission Sources

Flame atomic emission

Flame atomic spectroscopy

Flame atomization Flames

Flame atomizers

Flame emission spectroscopy

Flames atomic emission spectroscopy

Flames atoms

© 2024 chempedia.info