Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic absorption spectroscopy ceramics analysis

Chemical Analysis. The chemical composition of ancient objects is important for their authentication. The nature as well as the relative amounts of major, minor, and trace elements in any object are of use for determining the authenticity or otherwise of ceramics, glass, or alloys. A wide range of analytical techniques, depending on the nature of the material studied, have been used for this purpose, including X-rays fluorescence analysis, mass spectrometry, atomic absorption spectroscopy, and neutron activation analy-... [Pg.463]

Thirty-two sherds representing five different examples of Kayenta Anasazi Pueblo II pottery (Tusayan Corrugated [TC], Medicine Black-on-Red [MB], Tusayan Black-on-Red [TB], Dogoszhi Black-on-White [DB], and Sosi Black-on-White [SB]) have been analyzed for the elements As, Ba, Co, Cr, Cm, Fe, Mn, Ni, Pb, Se, V, and Zn by using the techniques of flame atomic absorption spectroscopy (.FAA) and electrothermal atomic absorption spectroscopy (ETAA). Analytical procedures for the chemical analysis of ceramics afford accuracy and sensitivity and require only a modest capital investment for instrumentation. The sherd samples were collected at two sites, one in southern Utah (Navajo Mountain [NM]) and the second in northern Arizona (Klethla Valley [KV]). These sites are approximately 60 km apart. Statistical treatment of the data shows that only three clay types were used in the 32 sherds analyzed, and that only three elements (Fe, Pb, and Ni) are necessary to account for 100% of the dispersion observed within this sample set. [Pg.129]

X-ray and electron spectroscopies are very useful techniques to study the electronic state and chemical bonding of various kinds of functional materials, such as ceramics and alloys. Since the leading achievement by Siegbahn et al. x-ray photoelectron spectroscopy (XPS) is known to be very efficient for chemical state analysis of matters. They provide information not only on chemical components but also that on the valence electronic state and the chemical bonding of atoms constructing the materials. The direct information on the density of state (DOS) for solid state material can be obtained from XPS of the valence state region. Figure 1 schematically illustrates the relationship between the electronic state of matter and photoelectron spectrum as well as x-ray emission and absorption spectroscopies, and also the characteristics of these spectroscopies. [Pg.2]

CONTENTS 1. Basic Principles (J. W. Robinson). 2. Instrumental Requirements and Optimisation (J. E. Cantle). 3. Practical Techniques (J. E. Cantle). 4a. Water and Effluents (B. J. Farey and L A. Nelson). 4b. Marine Analysis by AAS (H. Haraguchi and K. Fuwa). 4c. Analysis of Airborne Particles in the Workplace and Ambient Atmospheres (T.J. Kneip and M. T. Kleinman). 4d. Application of AAS to the Analysis of Foodstuffs (M. Ihnat). 4e. Applications of AAS in Ferrous Metallurgy (K. Ohis and D. Sommer). 4f. The Analysis of Non-ferrous Metals by AAS (F.J. Bano). 4g. Atomic Absorption Methods in Applied Geochemistry (M. Thompson and S. J. Wood). 4h. Applications of AAS in the Petroleum Industry W. C. Campbell). 4i. Methods forthe Analysis of Glasses and Ceramics by Atomic Spectroscopy (W. M. Wise et al.). 4j. Clinical Applications of Flame Techniques (B.E. Walker). 4k. Elemental Analysis of Body Fluids and Tissues by Electrothermal Atomisation and AAS (H. T. Delves). 4I. Forensic Science (U. Dale). 4m. Fine, Industrial and Other Chemicals. Subject Index. (All chapters begin with an Introduction and end with References.)... [Pg.316]

Various techniques can be used for quantitative analysis of chemical composition, including (i) optical atomic spectroscopy (atomic absorption, atomic emission, and atomic fluorescence), (ii) X-ray fluorescence spectroscopy, (iii) mass spectrometry, (iv) electrochemistry, and (v) nuclear and radioisotope analysis [41]. Among these, optical atomic spectroscopy, involving atomic absorption (AA) or atomic emission (AE), has been the most widely used for chemical analysis of ceramic powders. It can be used to determine the contents of both major and minor elements, as well as trace elements, because of its high precision and low detection limits. [Pg.212]

As mentioned earlier, optical atomic spectroscopy is only able to analyze solution sample. As a result, ceramic powders to be tested should be made into solution. The solution is then broken into line droplets and vaporized into individual atoms by heating, which is the step critical to the precision and accuracy of the analysis. Flame is generally used to vaporize the solution, which is therefore also known as flame atomic absorption spectrometry or flame AA. [Pg.214]

For the analysis of ceramic powders by optical atomic specfroscopy, a portion of the powder has to be converted into individual atoms. In practice, this is achieved by dissolving the powder in a liquid to form a solution, which is then broken into fine droplets and vaporized into individual atoms by heating. The precision and accuracy of optical atomic spectroscopy are critically dependent on this step. Vaporization is most commonly achieved by introducing droplets into a flame (referred to as flame atomic absorption spectrometry or flame AA). Key problems with flame AA include incomplete dissociation of the more refractory elements (e.g., B, V, Ta, and W) in the flame and difficulties in determining elements that have resonance lines in the far ultraviolet region (e.g., P, S, and the halogens). While flame AA is rapid, the instruments are rarely automated to permit simultaneous analysis of several elements. [Pg.159]


See other pages where Atomic absorption spectroscopy ceramics analysis is mentioned: [Pg.234]    [Pg.101]    [Pg.15]    [Pg.130]    [Pg.157]    [Pg.750]    [Pg.39]    [Pg.373]   
See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Analysis spectroscopy

Atomic absorption analysis

Atomic absorption spectroscopy

Atomic analyses

Atomic spectroscopy

Atomic spectroscopy analysis

Ceramics analysis atomic absorption

Ceramics atoms

© 2024 chempedia.info