Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atmosphere hydroperoxides

Frey MM, Stewart RW, McCormell JR, Bales RC (2005) Atmospheric hydroperoxides in West Antarctica lirtks to stratospheric ozone and atmospheric oxidation capacity. J Geophys Res Atmos 110 D23301... [Pg.189]

Under relatively low NOx conditions in the atmosphere, a part of alkyl peroxy radicals, and hydroxyalkyl peroxy radicals react with HO2 to give hydroperoxy butane (pathways (f), (k)), and hydroxyhydroperoxy butane (pathway (q)). Thus, in oxidation reactions of alkane in the atmosphere, hydroperoxides, hydoxyhydor-peroxides, and hydroxyalkyl nitrate, could also be produced in addition to the normal aldehydes, ketones and alkyl nitrates. [Pg.297]

Kharasch called this the peroxide effect and demonstrated that it could occur even if peroxides were not deliberately added to the reaction mixture Unless alkenes are pro tected from atmospheric oxygen they become contaminated with small amounts of alkyl hydroperoxides compounds of the type ROOH These alkyl hydroperoxides act m the same way as deliberately added peroxides promoting addition m the direction opposite to that predicted by Markovmkov s rule... [Pg.243]

The reaction follows a free radical mechanism and gives a hydroperoxide a compound of the type ROOH Hydroperoxides tend to be unstable and shock sensitive On stand mg they form related peroxidic derivatives which are also prone to violent decomposi tion Air oxidation leads to peroxides within a few days if ethers are even briefly exposed to atmospheric oxygen For this reason one should never use old bottles of dialkyl ethers and extreme care must be exercised m their disposal... [Pg.674]

In the first step cumene is oxidized to cumene hydroperoxide with atmospheric air or air enriched with oxygen ia one or a series of oxidizers. The temperature is generally between 80 and 130°C and pressure and promoters, such as sodium hydroxide, may be used (17). A typical process iavolves the use of three or four oxidation reactors ia series. Feed to the first reactor is fresh cumene and cumene recycled from the concentrator and other reactors. Each reactor is partitioned. At the bottom there may be a layer of fresh 2—3% sodium hydroxide if a promoter (stabilizer) is used. Cumene enters the side of the reactor, overflows the partition to the other side, and then goes on to the next reactor. The air (oxygen) is bubbled ia at the bottom and leaves at the top of each reactor. [Pg.95]

The coproduct 1-phenylethanol from the epoxidation reactor, along with acetophenone from the hydroperoxide reactor, is dehydrated to styrene in a vapor-phase reaction over a catalyst of siUca gel (184) or titanium dioxide (170,185) at 250—280°C and atmospheric pressure. This product is then distilled to recover purified styrene and to separate water and high boiling organics for disposal. Unreacted 1-phenylethanol is recycled to the dehydrator. [Pg.140]

This reaction is the cause of a widely recognized laboratory hazard. The peroxides formed from several commonly used ethers, such as diethyl ether and tetrahydrofuran, are explosive. Appreciable amounts of such peroxides can build up in ether samples that have been exposed to the atmosphere. Because the hydroperoxides are less volatile than the ethers, they are concentrated by evaporation or distillation, and the concentrated peroxide solutions may explode. For this reason, extended storage of ethers that have been exposed to oxygen is extremely hazardous. [Pg.708]

If the grafting is carried out in air, the active sites on the polymeric backbone is attacked by atmospheric oxygen leading to the formation of macroperoxy radical, which might abstract the hydrogen atom from the backbone polymer by an inter- or intramolecular process to give hydroperoxide groups as shown. [Pg.490]

Oxidation of C12-C14 n-paraffms using boron trioxide catalysts was extensively studied for the production of fatty alcohols.Typical reaction conditions are 120-130°C at atmospheric pressure. ter-Butyl hydroperoxide (0.5 %) was used to initiate the reaction. The yield of the alcohols was 76.2 wt% at 30.5% conversion. Fatty acids (8.9 wt%) were also obtained. Product alcohols were essentially secondary with the same number of carbons and the same structure per molecule as the parent paraffin hydrocarbon. This shows that no cracking has occurred under the conditions used. The oxidation reaction could be represented as ... [Pg.183]

Epoxidation of propylene with ethylbenzene hydroperoxide is carried out at approximately 130°C and 35 atmospheres in presence of molybdenum catalyst. A conversion of 98% on the hydroperoxide has been reported ... [Pg.222]

Phenol, CeHsOH (hydroxybenzene), is produced from cumene by a two-step process. In the first step, cumene is oxidized with air to cumene hydroperoxide. The reaction conditions are approximately 100-130°C and 2-3 atmospheres in the presence of a metal salt catalyst ... [Pg.271]

In the second step, the hydroperoxide is decomposed in the presence of an acid to phenol and acetone. The reaction conditions are approximately 80°C and slightly below atmospheric ... [Pg.271]

Radiation cross-linking of PVC in the absence of additives has been reported by several authors [20,21,267,268]. PVC by itself is not readily cross-linkable by EB radiation. In the study of radiation chemistry of PVC, it is known that the oxidation takes place in the presence of atmospheric oxygen during irradiation [269] and hydroperoxide groups are produced on oxidation. The formation of carbonyl group along with the elimination of HCl from PVC on irradiation in air has also been reported [270,271]. [Pg.876]

Kharasch and coworkers were the first to show that thiols and olefins cooxidize in an atmosphere of oxygen at room temperature to yield substituted 2-sulphinylethanols 81 (equation 45). Later on, it was demonstrated that a-mercapto-substituted hydroperoxides are formed as intermediates. Thus, Oswald found that cooxidation of thiophenol with styrene gave the corresponding 8-mercaptohydroperoxide 82 which subsequently underwent rearrangement to 2-phenylsulphinyl-a-phenylethanol 83 (equation 46). [Pg.255]

The following analytical procedure for the accurate estimation of hydroperoxides was proposed [61], The reduction of peroxide occurs in a solution of isopropanol saturated with Nal in the presence of acetic acid and C02 atmosphere at 373 K (in water bath). The reaction ceases after 15 min. The relative standard deviation equals 0.2%. [Pg.174]

The active alkoxyl radicals formed by this reaction start new chains. Apparently, the hydroperoxide group penetrates in the polar layer of the micelle and reacts with the bromide anion. The formed hydroxyl ion remains in the aqueous phase, and the MePhCHO radical diffuses into the hydrocarbon phase and reacts with ethylbenzene. The inverse emulsion of CTAB accelerates the decay of hydroperoxide MePhCHOOH. The decomposition of hydroperoxide occurs with the rate constant k = 7.2 x 1011 exp(-91.0/R7) L mol-1 s-1 (T = 323-353 K, CTAB, ethylbenzene [28]). The decay of hydroperoxide occurs more rapidly in an 02 atmosphere, than in an N2 atmosphere. [Pg.439]

Oxirane A general process for oxidizing olefins to olefin oxides by using an organic hydroperoxide, made by autoxidation of a hydrocarbon. Two versions are commercial. The first to be developed oxidizes propylene to propylene oxide, using as the oxidant f-butyl hydroperoxide made by the atmospheric oxidation of isobutane. Molybdenum naphthenate is used as a... [Pg.198]

Syntheses. The polymerization reaction of poly(2-methyl pentene-1 sulfone) (PMPS) was carried out at -78°C. Purified 2-methyl pentene-1 (42 grams) and condensed SO, (about 125 grams) at a molar ratio of 1 to 4 were charged into the reaction system under atmospheric pressure, and the reaction was Initiated by 2 milliliters of butyl hydroperoxide. The white polymer mass was purified by dissolving 1n acetone, then precipitating Into methanol (8). [Pg.365]

Photolytic. Major products reported from the photooxidation of butane with nitrogen oxides under atmospheric conditions were acetaldehyde, formaldehyde, and 2-butanone. Minor products included peroxyacyl nitrates and methyl, ethyl and propyl nitrates, carbon monoxide, and carbon dioxide. Biacetyl, tert-butyl nitrate, ethanol, and acetone were reported as trace products (Altshuller, 1983 Bufalini et al, 1971). The amount of sec-butyl nitrate formed was about twice that of n-butyl nitrate. 2-Butanone was the major photooxidation product with a yield of 37% (Evmorfopoulos and Glavas, 1998). Irradiation of butane in the presence of chlorine yielded carbon monoxide, carbon dioxide, hydroperoxides, peroxyacid, and other carbonyl compounds (Hanst and Gay, 1983). Nitrous acid vapor and butane in a smog chamber were irradiated with UV light. Major oxidation products identified included 2-butanone, acetaldehyde, and butanal. Minor products included peroxyacetyl nitrate, methyl nitrate, and unidentified compounds (Cox et al., 1981). [Pg.204]

Nonen-2-one. J. Gen. Chem. (USSR), Vol. 33, p. 134 of the English translation. Oxidation of the ketone is accomplished in this manner 0.5 mole of n-hexylideneacetone (this should be freshly distilled at 93-95° with 16 mm of vacuo) is shaken in an oxygen atmosphere at 30° for 8 hours. Decompose the hydroperoxides with a little sodium sulphite. Fractionally distill in three steps about 40° at 16 mm vacuo, 93-95° at 16 mm vacuo, and the product is obtained by reducing the vacuum to 1 mm and raising the temp to 107-108°. Yield of pale, yellow, viscous liquid, 6 g. The unreacted starting material (93-95° 16 mm) is used over and over until reacted. [Pg.72]


See other pages where Atmosphere hydroperoxides is mentioned: [Pg.641]    [Pg.641]    [Pg.641]    [Pg.641]    [Pg.546]    [Pg.132]    [Pg.250]    [Pg.261]    [Pg.182]    [Pg.286]    [Pg.255]    [Pg.56]    [Pg.920]    [Pg.115]    [Pg.457]    [Pg.452]    [Pg.486]    [Pg.487]    [Pg.75]    [Pg.155]    [Pg.389]    [Pg.27]    [Pg.142]    [Pg.832]    [Pg.669]    [Pg.55]    [Pg.1666]    [Pg.32]    [Pg.225]    [Pg.249]   
See also in sourсe #XX -- [ Pg.673 , Pg.678 ]




SEARCH



© 2024 chempedia.info