Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atlantic Ocean calcite saturation

Typical vertical saturation profiles for the North Atlantic, North Pacific, and Central Indian oceans are presented in Figure 4.10. The profiles in the Atlantic and Indian oceans are similar in shape, but Indian Ocean waters at these GEOSECS sites are definitely more undersaturated than the Atlantic Ocean. The saturation profile in the Pacific Ocean is complex. The water column between 1 and 4 km depth is close to equilibrium with calcite. This finding is primarily the result of a broad oxygen minimum-C02 maximum in mid-water and makes choosing the saturation depth (SD) where Oc = 1 difficult (the saturation depth is also often referred to as the saturation level SL). [Pg.144]

We have calculated the saturation depth (SD) with respect to calcite for various regions of the Atlantic, Pacific and Indian oceans as shown in Figure 4.12. The saturation depth is deepest in the Eastern Atlantic ocean. In both the eastern and western Atlantic Ocean, the saturation depth becomes shallower to the south,... [Pg.145]

The Geochemical Ocean Section Program (GEOSECS) has produced data from which it is possible to profile the saturation state of seawater with respect to calcite and aragonite in the Atlantic and Pacific oceans. Representative north-south calcite saturation profiles for the Western Atlantic and Central Pacific oceans are presented in Figures 5 and 6 (based on 39). It was observed that the saturation state of seawater with respect to calcite at the CCD was close to constant ( 2 = 0.70 I" 0,05) except in the southern extremes (39). Broecker and Takahashi (31) have recently found that the carbonate ion concentration is close to constant at the FL, when appropriate corrections are made for pressure. The saturation state of seawater at the FL, calculated by the method presented in this paper, is 0.80 0.05. Berger (40) has presented profiles for Rq, FL, CCD and CSL (calcite saturation level) in the eastern and western Atlantic ocean (see... [Pg.514]

Figure 5. Distribution of calcite saturation states in the Western Atlantic Ocean... Figure 5. Distribution of calcite saturation states in the Western Atlantic Ocean...
Figure 7). His results indicate that Rq and CSL are close to coincident with the probable uncertainty of their determination. A detailed profile showing the relations among the sediment marker levels and the saturation state of seawater with respect to calcite and aragonite in the Northwest Atlantic Ocean is presented in Figure 8. Figure 7). His results indicate that Rq and CSL are close to coincident with the probable uncertainty of their determination. A detailed profile showing the relations among the sediment marker levels and the saturation state of seawater with respect to calcite and aragonite in the Northwest Atlantic Ocean is presented in Figure 8.
Figure 7. The depth distribution of the Ro and calcite saturation levels, the foraminiferal lysocline and the calcium carbonate compensation depth in the Western and Eastern Atlantic Ocean (after Ref. 40)... Figure 7. The depth distribution of the Ro and calcite saturation levels, the foraminiferal lysocline and the calcium carbonate compensation depth in the Western and Eastern Atlantic Ocean (after Ref. 40)...
Figure 8, A detailed profile of calcite and aragonite saturation states and sediment marker depth in the Northwestern Atlantic Ocean, (Percentages are estimates of the amount of calcite dissolution which must occur to produce a given marker level.)... Figure 8, A detailed profile of calcite and aragonite saturation states and sediment marker depth in the Northwestern Atlantic Ocean, (Percentages are estimates of the amount of calcite dissolution which must occur to produce a given marker level.)...
Calculations such as those by Morse and Mackenzie (1990) indicate that the calcite saturation depth is generally —1 km greater than proposed by Berger (1977) and that it is much greater than R. It appears only loosely related to the FL. In the equatorial eastern Atlantic Ocean, FL is —600 m shallower than the saturation depth. If these observations are close to correct, the long cherished idea of a tight relation between seawater chemistry and carbonate depositional facies must be reconsidered (Mekik et al., 2002). The influence of near interfacial diagenetic processes on these relationships is discussed in the next section. [Pg.3538]

Figure 3 Bathymetric profiles of calcium carbonate (calcite) saturation for hydrographic stations in the Atlantic and Pacific Oceans (data from Takahashi etai 1980). Carbonate saturation here is expressed as ACOa ", defined as the difference between the in situ carbonate ion concentration and the saturation carbonate ion concentration at each depth ACOa " = [C03 ]seawater - [COa Jsaturation)-The saturation horizon corresponds to the transition from waters oversaturated to waters undersaturated with respect to calcite (A 003 = 0). This level is deeper in the Atlantic than in the Pacific because Pacific waters are COa-enriched and [C03 ]-depleted as a result of thermohaline circulation patterns and their longer isolation from the surface. The Atlantic data are from GEOSECS Station 59 (30°12 S, 39°18 W) Pacific data come from GEOSECS Station 235 (16°45 N,161°23 W). Figure 3 Bathymetric profiles of calcium carbonate (calcite) saturation for hydrographic stations in the Atlantic and Pacific Oceans (data from Takahashi etai 1980). Carbonate saturation here is expressed as ACOa ", defined as the difference between the in situ carbonate ion concentration and the saturation carbonate ion concentration at each depth ACOa " = [C03 ]seawater - [COa Jsaturation)-The saturation horizon corresponds to the transition from waters oversaturated to waters undersaturated with respect to calcite (A 003 = 0). This level is deeper in the Atlantic than in the Pacific because Pacific waters are COa-enriched and [C03 ]-depleted as a result of thermohaline circulation patterns and their longer isolation from the surface. The Atlantic data are from GEOSECS Station 59 (30°12 S, 39°18 W) Pacific data come from GEOSECS Station 235 (16°45 N,161°23 W).
North Atlantic to 500 m in the North Pacific. This reflects an increasing addition of CO2 to deep waters as meridional overturning circulation moves them from the Atlantic to the Indian and then to the Pacific Ocean. Thus, as a water mass ages, it becomes more corrosive to calcium carbonate. Since aragonite is more soluble than calcite, its saturation horizon lies at shallower depths, rising from 3000 m in the North Atlantic to 200 m in the North Pacific. [Pg.396]


See other pages where Atlantic Ocean calcite saturation is mentioned: [Pg.146]    [Pg.166]    [Pg.3378]    [Pg.3522]    [Pg.3523]    [Pg.296]    [Pg.37]    [Pg.171]    [Pg.205]    [Pg.3154]    [Pg.3540]    [Pg.794]    [Pg.123]    [Pg.423]    [Pg.368]   
See also in sourсe #XX -- [ Pg.37 , Pg.147 ]




SEARCH



Atlantic

Atlantic Ocean

Atlantic Ocean calcite saturation states

Calcite

Calcite Ocean

© 2024 chempedia.info