Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric copolymerization

An alternative method for generating enriched 1,2-diols from meso-epoxides consists of asymmetric copolymerization with carbon dioxide. Nozaki demonstrated that a zinc complex formed in situ from diethylzinc and diphenylprolinol catalyzed the copolymerization with cyclohexene oxide in high yield. Alkaline hydrolysis of the isotactic polymer then liberated the trans diol in 94% yield and 70% ee (Scheme 7.20) [40]. Coates later found that other zinc complexes such as 12 are also effective in forming isotactic polymers [41-42]. [Pg.242]

This section summarizes recent advances in the asymmetric copolymerization of 1-alkene and carbon monoxide, giving the corresponding head-to-tail isotactic copolymer with high regio- and enantioselectivity as well as tacticity. [Pg.452]

The first successful example of asymmetric copolymerization of propene with carbon monoxide was reported in 1992 and used a Pd complex with a chiral electron-rich bisphosphine... [Pg.453]

The catalyst [Pd(Me-DUPHOS)(MeCN)2](BF4)2 was also effective in the alternating asymmetric copolymerization of aliphatic a-olefins with carbon monoxide [27,28]. The polymer synthesized in a CH3N02-CH30H mixture has both 1,4-ketone and spiroketal (10) units in the main chain. The propylene-CO copolymer consisting only of a 1,4-ketone structure shows [ ]D +22° (in (CF3)2CHOH), and the optical purity of the main chain chiral centers is over 90% as estimated by NMR analysis using a chiral Eu shift reagent. [Pg.762]

In 1999, Nozaki and co-workers were the first to report an asymmetric copolymerization, catalysed by a chiral amino-alkoxide zinc complex 15 (Table 6) and producing optically active PCHC with 70% ee (measured by hydrolysing the copolymer and analysing the resulting diol using chiral GC) [138,148], The crystal structure of the catalyst, reported subsequently, showed a dimeric structure it was unclear whether the dimer was maintained during the copolymerization [148], In the solid state, the zinc-zinc distance in the catalyst was determined to be 3.00 A (vs. ca. 4 A, for the loosely bound BDI zinc dimers). [Pg.200]

D,L-copolymerization of enantiomerically imbalanced mixtures of 6,8-dioxybicy-clo[3.2. l]octane (1) has revealed that an isotactic sequence along the polymer chain is preferentially formed by the enantiomer selection at the chiral growing chain end. [21] If this is generally the case, asymmetric copolymerization should occur when a racemic bicyclic acetal is allowed to copolymerize with an optically... [Pg.10]

When a-olefins such as propene and styrene are used in place of ethene or norbornene for this copolymerization, regio- and enantio-selectivities of the olefin insertion arise and the control of these becomes a difficult aspect for obtaining stereo-regular polyketones. In the head-to-tail copolymer, a chirotopic center exists per monomer unit. If the same enantioface of each a-olefin is selected by a catalyst, the resulting copolymer is isotactic in which all the chirotopic carbons in a polymer backbone possess the same absolute configuration. Thus, asymmetric copolymerization using a chiral catalyst is now attracting much attention. [Pg.49]

Extensive studies of stereoselective polymerization of epoxides were carried out by Tsuruta et al.21 s. Copolymerization of a racemic mixture of propylene oxide with a diethylzinc-methanol catalyst yielded a crystalline polymer, which was resolved into optically active polymers216 217. Asymmetric selective polymerization of d-propylene oxide from a racemic mixture occurs with asymmetric catalysts such as diethyzinc- (+) bomeol218. This reaction is explained by the asymmetric adsorption of monomers onto the enantiomorphic catalyst site219. Furukawa220 compared the selectivities of asymmetric catalysts composed of diethylzinc amino acid combinations and attributed the selectivity to the bulkiness of the substituents in the amino acid. With propylene sulfide, excellent asymmetric selective polymerization was observed with a catalyst consisting of diethylzinc and a tertiary-butyl substituted a-glycol221,222. ... [Pg.18]

Spectacular achievements in catalytic asymmetric epoxidation of olefins using chiral Mnm-salen complexes have stimulated a great deal of interest in designing polymeric analogs of these complexes and in their use as recyclable chiral catalysts. Techniques of copolymerization of appropriate functional monomers have been utilized to prepare these polymers, and both organic and inorganic polymers have been used as the carriers to immobilize these metal complexes.103... [Pg.454]

Molecular imprinted polymers MIPs exhibit predetermined enan-tioselectivity for a specific chiral molecnle, which is nsed as the chiral template dnring the imprinting process. Most MIPs are obtained by copolymerization from a mixture consisting of a fnnctional mono-nnsatn-rated (vinylic, acrylic, methacrylic) monomer, a di- or tri-nnsatnrated cross-linker (vinylic, acrylic, methacrylic), a chiral template (print molecnle) and a porogenic solvent to create a three-dimensional network. When removing the print molecnle, chiral cavities are released within the polymer network. The MIP will memorize the steric and functional binding featnres of the template molecnle. Therefore, inclusion of the enantiomers into the asymmetric cavities of this network can be assumed as... [Pg.477]

The above theory can be extended to deal with other more complex cases. For example, the two ends of a biopolymer need not behave identically, and microtubules, as noted earlier, are helical polymers of asymmetric protomer units. Thus, two sets of on- and off-constants might be necessary. In other cases, such as in the polymerization of tubulin in the presence of tubulin—colchicine complex (Sternlicht and Ringel, 1979 Sternlicht et al., 1980), there may be the need to consider copolymerization possibilities. [Pg.170]

As has been described in Section 4.2.3, immobilized TADDOL-derivatives are particularly important catalytic species which can be applied to asymmetric synthesis in many ways. Seebach et al. developed a dendritic elongated TADDOL-deri-vative (32) that could be embedded in polystyrene by copolymerization (Scheme 4.18). Upon treatment with Ti(OiPr)4 the chiral polymeric diisopropoxy-Ti-TAD-... [Pg.220]

Using a SAM of an asymmetric azo compounds Baum and Brittain [327] homo-and block copolymerized styrene, MMA and N,N -dimethylacrylamide under RAFT conditions in the presence of 2-phenylprop-2-yl dithiobenzoate as the chain... [Pg.427]

Carbohydrates remain an attractive source of chirality in preparation of ligands for asymmetric catalysis. Functionalized phospholanes, 192 [167], and chiral bisphosphinites 193 [168] with an attached crown ether unit were obtained recently from D-mannitol and from phenyl 2,3-di-0-allyl-4,6-0-benzylidene-p-D-glucopyranoside, respectively (Figure 18). Compounds 194 and 195 were obtained in the photochemical addition of H2P(CH2)3PPH2 onto the crresponding alkenes - Pd-complexes of these new bisphosphines were successfully applied as catalysts in the copolymerization of CO and... [Pg.44]

The asymmetric reactions discussed in this chapter may be divided into three different types of reaction, as (1) hydrometallation of olefins followed by the C—C bond formation, (2) two C C bond formations on a formally divalent carbon atom, and (3) nucleophilic addition of cyanide or isocyanide anion to a carbonyl or its analogs (Scheme 4.1). For reaction type 1, here described are hydrocarbonyla-tion represented by hydroformylation and hydrocyanation. As for type 2, Pauson-Khand reaction and olefin/CO copolymerization are mentioned. Several nucleophilic additions to aldehydes and imines (or iminiums) are described as type 3. [Pg.101]

It is also possible to desymmetiize a meso epoxide in the alternating copolymerization. Thus, asymmetric alternating copolymerization of cyclohexene oxide with CO2 catalyzed by a dimeric zinc complex provides a polycarbonate in which the diol unit is optically active with 80% ee. (See Scheme 4.24.)... [Pg.124]

Reactions where NLE have been discovered include Sharpless asymmetric epoxi-dation of allylic alcohols, enantioselective oxidation of sulfides to sulfoxides, Diels-Alder and hetero-Diels-Alder reactions, carbonyl-ene reactions, addition of MesSiCN or organometallics on aldehydes, conjugated additions of organometal-lics on enones, enantioselective hydrogenations, copolymerization, and the Henry reaction. Because of the diversity of the reactions, it is more convenient to classify the examples according to the types of catalyst involved. [Pg.213]

In the polymer field, reactions of this type are subject to several limitations related to the structure and symmetry of the resultant polymers. In effect, the stereospecific polymerization of propylene is in itself an enantioface-diflferen-tiating reaction, but the polymer lacks chirality. As already seen in Sect. V-A there are few intrinsically chiral stractures (254) and even fewer that can be obtained from achiral monomers. With two exceptions, which will be dealt with at the end of this section, optically active polymers have been obtained only from 1- or 1,4-substituted butadienes, fiom unsaturated cyclic monomers, fiom substituted benzalacetone, or by copolymerization of mono- and disubstituted olefins. The corresponding polymer stmctures are shown as formulas 32 and 33, 53, 77-79 and 82-89. These processes are called asymmetric polymerizations (254, 257) the name enantiogenic polymerization has been recently proposed (301). [Pg.78]

A further example of radical asymmetric polymerization is the copolymerization between maleic anhydride and styrene (357-359). The reaction takes place in an emulsion in the presence of lecithin and the asymmetric induction... [Pg.82]

Note 3 Polymerization is defined as the process of converting a monomer or a mixture of monomers into a polymer [1]. Thus the definition of an asymmetric polymerization covers homopolymerization and copolymerization. [Pg.74]

We note that there are NMR-based kinetic studies on zirconocene-catalyzed pro-pene polymerization [32], Rh-catalyzed asymmetric hydrogenation of olefins [33], titanocene-catalyzed hydroboration of alkenes and alkynes [34], Pd-catalyzed olefin polymerizations [35], ethylene and CO copolymerization [36] and phosphine dissociation from a Ru-carbene metathesis catalyst [37], just to mention a few. [Pg.12]

However, there are numerous reported instances of stereocontrol by a site-control mechanism involving chiral metal catalysts. That is, Nozaki and coworkers first illustrated the asymmetric alternating copolymerization of cyclohexene oxide and CO2 employing a chiral zinc catalyst derived from an amino alcohol (Fig. 2a) [13-16]. This was soon followed by studies of Coates and coworkers utilizing an imine-oxazoline zinc catalyst (Fig. 2b) [17]. Both investigations provided isotactic poly(cyclohexene carbonate) (Fig. 3) with enantiomeric excess of approximately 70%. [Pg.7]

Shi L, Lu X-B, Zhang R, Peng X-J, Zhang C-Q, Li J-E, Peng X-M (2006) Asymmetric alternating copolymerization and terpolymerization of epoxides with carbon dioxide at mild conditions. Macromolecules 39 5679-5685... [Pg.46]

A special case of asymmetric enantiomer-differentiating polymerization is the isoselective copolymerization of optically active 3-methyl-1-pentene with racemic 3,7-dimethyl-1-octene by TiCl4 and diisobutylzinc [Ciardelli et al., 1969]. The copolymer is optically active with respect to both comonomer units as the incorporated optically active 3-methyl-l-pentene directs the preferential entry of only one enantiomer of the racemic monomer. The directing effect of a chiral center in one monomer unit on the second monomer, referred to as asymmetric induction, is also observed in radical and ionic copolymerizations. The radical copolymerization of optically active a-methylbenzyl methacrylate with maleic anhydride yields a copolymer that is optically active even after hydrolytic cleavage of the optically active a-methylbenzyl group from the polymer [Kurokawa and Minoura, 1979]. Similar results were obtained in the copolymerizations of mono- and di-/-menthyl fumarate and (—)-3-(P-styryloxy)menthane with styrene [Kurokawa et al., 1982],... [Pg.707]

With the bisoxazoline hgand (S)-Phbox and CuCl, the asymmetric oxidative couphng of 2-naphthol and hydroxy-2-naphthoates resulted in an asymmetrically substituted 2,2 -binaphthol with ee s of up to 65% [260]. On the basis of the previous results obtained with this catalyst system, the asymmetric oxidative cross-coupling polymerization of 2,3-dihydroxynaphthalene [261] and methyl 6,6 -dihydroxy-2,2 -binaphthalene-7,7 -dicarboxylate [262] as well as the copolymerization of 6,6 -dihydroxy-2,2 -binaphthalene and dihexyl 6,6 -dihydroxy-2,2 -binaphthalene-7,7 -dicarboxylate with Cu diamine catalysts were carried out imder aerobic conditions, using O2 as the oxidant, and a cross-coupling selectivity of 99% was achieved [263]. [Pg.65]


See other pages where Asymmetric copolymerization is mentioned: [Pg.99]    [Pg.456]    [Pg.5243]    [Pg.5242]    [Pg.456]    [Pg.762]    [Pg.99]    [Pg.456]    [Pg.5243]    [Pg.5242]    [Pg.456]    [Pg.762]    [Pg.315]    [Pg.168]    [Pg.18]    [Pg.35]    [Pg.453]    [Pg.461]    [Pg.231]    [Pg.1450]    [Pg.495]    [Pg.62]    [Pg.118]    [Pg.118]    [Pg.77]   
See also in sourсe #XX -- [ Pg.82 ]

See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Copolymerization asymmetric alternating

Maleic anhydride, asymmetric copolymerization

© 2024 chempedia.info