Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Assembly, reactant molecules

The L-B films offer some advantages over aqueous-hydrocarbon interfaces of micelles and the related assemblies discussed above in terms of the magnitude of their orienting ability and the ease of interpretation of selectivity in photoreactions conducted in them. Molecules in the films have very little freedom of motion (stiff reaction cavities), their interfaces are very well defined, and therefore the alignment of reactant molecules can be readily expressed in the products. Photodimerization of stilbazole derivatives 62, N-octadecyl-l-(4-pyridyl)-4-(phenyl)-l,3-butadiene, (63), surfactant styrene derivatives 64 and 65, and cinnamic acids have been carried out in L-B films [18, 196-200], In all cases, single isomeric head-head dimers are obtained. Geometric isomerization of olefins has not been observed in competition with photodimerization. Independent of the location of the chromophore (i.e.,... [Pg.144]

The modification of chemical reactions through the incorporation of the reactant molecules into aqueous micelles or other organized assemblies has received considerable attention in recent years. Reactions are known for which rates, mechanisms, and even the stereochemistry have been significantly affected by the addition of so-called amphi-philes to the reaction medium. [Pg.292]

Diverse sets of building blocks do not lead necessarily to an optimized diversity of the resulting library. The properties of the assembled final molecules are not a simple sum of the fragment properties. Especially physico-chemical constants (e.g., lipophi-licity, basicity, etc.) depend very much on interactions between structural fragments. It has been shown that assessing the diversity of the enumerated library leads to significantly more diverse libraries than from assessing merely the diversity of the reactants [129, 130]. [Pg.595]

Molecular capsules are structurally elaborated receptors that completely surround the hosted molecule(s). Encapsulation based on covalent bonds yields permanent arrangements of molecules-within-molecules. Reversible encapsulation, on the other hand, is based on self-assembling through formation of weak supramolecular bonds and offers possibilities for a dynamic in out exchange of encapsulated molecules. Most of the dimeric capsules developed by Rebek and his group are obtained through reversible self-assembly of resorcinarene subunits. When simultaneously encapsulated in the cylindri-cally shaped inner space of these capsules, two reactant molecules are temporarily isolated from others in solution and display reactivity features different from those in bulk solution. The matter has been extensively reviewed,and will not be discussed here. [Pg.209]

Another approach to introduce mesoporous channels to give better access of reactant molecules to the microporous regions is to assemble zeolite nanoparticles around micellar templates, in a modification of the standard route to mesoporous silicas. Reported examples include structures that possess walls made out of nanocrystals of zeolites such as Beta or ZSM-5. These composite solids possess enhanced hydrothermal stabilities and acidities compared to mesoporous solids with fully amorphous walls. The improved properties are attributed to the presence of the zeolite fragments, because zeolites are known to have higher acidity and hydrothermal stability than amorphous silica/... [Pg.410]

When the macroscopic reaction begins (e.g., we mix two reactants), a huge number of points appear in the entrance channel i.e., we have the reactants only. As the reactant molecules assemble or dissociate, the points appear or disappear. [Pg.911]

Up to this point I have described the development of TST for a canonical assembly of molecules, that is, to the situation where the distribution of reactant molecules among states is defined by the Boltzmann laws and a single temperature. It has been implicitly assumed that the location of the transition state (or critical dividing surface) is independent of the energy of the reactants. However, the microcanonical version of TST, referred to as /iTST can provide estimates of the rate coefficients, k E), for reactants of defined energy, and by integrating these values of k E) over the thermal distribution of energies, provide an improved estimate of k T). [Pg.30]

An important characteristic of reactions in micellar systems is that the micellar concentration can be varied to some extent. In a ususal solvent it is almost impossible to avoid side reactions. In a micellar system, on the other hand, side reactions can be avoided by adjusting the concentrations of reactants and micelles so that most micelles contain just one reactant molecule. The distribution of reactant molecules among micelles thus has a crucial influence on reaction in micellar assemblies, as discussed in Chapter 9. [Pg.211]

The Heck reaction, a palladium-catalyzed vinylic substitution, is conducted with olefins and organohalides or pseudohalides are frequently used as reactants [15, 16], One of the strengths of the method is that it enables the direct monofunctionalization of a vinylic carbon, which is difficult to achieve by other means. Numerous elegant transformations based on Heck chemistry have been developed in natural and non-natural product synthesis. Intermolecular reactions with cyclic and acyclic al-kenes, and intramolecular cyclization procedures, have led to the assembly of a variety of complex and sterically congested molecules. [Pg.381]

Extensive reviews of Diels-Alder reactions and hetero-Diels-Alder reactions in aqueous media have been presented. " " " " Micelles in the presence of catalytically active transition-metal ions catalyse the Diels-Alder reaction between 3-(/ -substituted phenyl)-l-(2-pyridyl)prop-2-en-l-ones with cyclopentadiene by a factor of 1.8 x 10 compared with the uncatalysed reaction in MeCN. " Diels-Alder reactions have been shown to be accelerated by encapsulation of both reactants by pseudospherical capsules assembled from self-complementary molecules (103). " ... [Pg.476]

Potential energy surfaces or profiles are descriptions of reactions at the molecular level. In practice, experimental observations are usually of the behaviour of very large numbers of molecules in solid, liquid, gas or solution phases. The link between molecular descriptions and macroscopic measurements is provided by transition state theory, whose premise is that activated complexes which form from reactants are in equilibrium with the reactants, both in quantity and in distribution of internal energies, so that the conventional relationships of thermodynamics can be applied to the hypothetical assembly of transition structures. [Pg.229]

A promising tool for controlling the regio- and stereoselectivity of photocycloaddition reaction (PCA) as well as the efficiency may be provided by assembling alkenes into a supramolecular structure with pre-organization of reactants such that the spatial arrangement of molecules would be favorable for the formation of only one cyclobutane isomer in a high yield. [Pg.239]

Structures originated by molecular self-assembly are usually larger (on the order of several nanometers, yielding mesoporous materials, Figure 3.4) than those obtained from organic templates (typically microporous, pore size <2nm) [5], The large size of the mesopore (2-50 nm) facilitates the access of reactants to the interior of the solid. This allows for processing of bulky molecules that cannot access the narrower porosity of microporous materials, like zeolites. Control of the synthesis... [Pg.50]

The formal potential, E0/, contains useful information about the ease of oxidation of the redox centers within the supramolecular assembly. For example, a shift in E0/ towards more positive potentials upon surface confinement indicates that oxidation is thermodynamically more difficult, thus suggesting a lower electron density on the redox center. Typically, for redox centers located close to the film/solution interface, e.g. on the external surface of a monolayer, the E0 is within 100 mV of that found for the same molecule in solution. This observation is consistent with the local solvation and dielectric constant being similar to that found for the reactant freely diffusing in solution. The formal potential can shift markedly as the redox center is incorporated within a thicker layer. For example, E0/ shifts in a positive potential direction when buried within the hydrocarbon domain of a alkane thiol self-assembled monolayer (SAM). The direction of the shift is consistent with destabilization of the more highly charged oxidation state. [Pg.75]


See other pages where Assembly, reactant molecules is mentioned: [Pg.212]    [Pg.356]    [Pg.162]    [Pg.241]    [Pg.576]    [Pg.3]    [Pg.279]    [Pg.201]    [Pg.201]    [Pg.201]    [Pg.368]    [Pg.499]    [Pg.149]    [Pg.211]    [Pg.179]    [Pg.125]    [Pg.130]    [Pg.240]    [Pg.27]    [Pg.342]    [Pg.10]    [Pg.14]    [Pg.175]    [Pg.765]    [Pg.211]    [Pg.207]    [Pg.187]    [Pg.191]    [Pg.194]    [Pg.199]    [Pg.200]    [Pg.202]    [Pg.10]    [Pg.38]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Molecules assemblies

Reactant molecule

© 2024 chempedia.info