Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ascorbic acid mechanism

Review of Ascorbic Acid Mechanisms of Action. Ascorbic acid and AP have antioxidant activity in fats, oils, vitamin A, and carotenoids. In these systems AP is a better antioxidant than are the phenolic antioxidants BHT and BHA, both from these data and others (29,35). Ascorbic acid protects against oxidation of flavor compounds in wine, beer, fruits, artichokes, and cauliflower (29) presumably by oxygen scavenging. The well-known formation of nitric oxide from nitrites by ascorbic acid is used not only for inhibition of nitrosamine fortnation, but also to promote... [Pg.547]

DeChatelet, L. R., Cooper, R. M., and McCall, C. E., 1972, Stimulation of the hexose monophosphate shunt in human neutrophils by ascorbic acid Mechanism of action, Antimicrob. Agents Chemother., 1 12. [Pg.228]

Stimulation of the hexose monophosphate shunt in human neutrophils by ascorbic acid mechanism of action. Antimicrobial Agents and Chemotherapy 1 12-16. [Pg.22]

The DAG conversion to L-ascorbic acid also can occur by a base-catalyzed mechanism. Methyl 2-oxo-L-gulonate (methyl DAG) is converted, on treatment with sodium methoxide, to sodium-L-ascorbate, which is then acidified to L-ascorbic acid. Various solvent systems have been evaluated and reported (46). [Pg.17]

Mechanism for RMC formation is proposed. Transfer of electrons from ascorbic acid proceeds through Me(III) atoms to molybdenum atoms in mixed POM. Me(III) atoms in heteropolyanion can be oxidized to Me(V) by Mo(VI) making possible easy oxidation of AA. [Pg.156]

Persulfate (41) reacts with transition metal ions (e.g. Ag, Fe21, Ti31) according to Scheme 3.42. Various other reduetants have been described. These include halide ions, thiols (e.g. 2-mercaptoethanol, thioglycolic acid, cysteine, thiourea), bisulfite, thiosulfate, amines (triethanolamine, tetramethylethylenediamine, hydrazine hydrate), ascorbic acid, and solvated electrons (e.g. in radiolysis). The mechanisms and the initiating species produced have not been fully elucidated for... [Pg.95]

Tetra Acetyl Glucosone Hydrate. A Novel Route to the Syntheses of Analogues of Ascorbic Acid and a Possible Mechanism for the Transformation of Hexoses into Kojic Acid, M. Stacey and L. M. Turton, J. Chem. Soc., (1946) 661 -664. [Pg.22]

Identical kinetics are found for the uranyl ion-catalysed aerobic oxidation of ascorbic acid and a similar mechanism has been put forward These results and others afford a sequence of catalytic activity for the aerobic oxidation of ascorbic acid ... [Pg.433]

The mechanism, then, by which ascorbic acid functions to block these reactions Is one of competitive kinetics with the susceptible amine for the nltrosatlng agent. Hence, the reactivity of any given amine will be an Important parameter. [Pg.198]

Antioxidant capacities of common individual curcuminoids were determined in vitro by phosphomolybdenum and linoleic acid peroxidation methods. Antioxidant capacities expressed as ascorbic acid equivalents (pmol/g) were 3099 for curcumin, 2833 for demethoxycurcumin, and 2677 for bisdemethoxycurcumin at concentrations of 50 ppm. The same order of antioxidant activity (curcumin > demethoxycurcumin > bisdemethoxycurcumin) was observed when compared with BHT (buty-lated hydroxyl toluene) in linoleic peroxidation tests. The antioxidant activity of curcumin in the presence of ethyl linoleate was demonstrated and six reaction products were identified and structurally characterized. The mechanism proposed for this activity consisted of an oxidative coupling reaction at the 3 position of the curcumin with the lipid and a subsequent intramolecular Diels-Alder reaction. ... [Pg.333]

A typical result for DPV In Fig. 4a shows the presence of two redox couples with peak potentials of 0.25 V and 0.19 V ( lOmV). Similar results have also been obtained with SWV. The relative Intensities of the two peaks vary from sample to sample but are always present with activated electrodes. The similarities between the potentials found for the surface species and for the oxidation of ascorbic acid suggest that an ec catalytic mechanism may be operative. The surface coverage of the o-qulnone Is estimated to be the order of 10 mol cm . It Is currently not possible to control the surface concentration of the o-qulnone-llke species or the oxygen content of the GCE surface. [Pg.587]

Cabelli, D.E. and Bielski, B. (1983). Kinetics and mechanism for the oxidation of ascorbic acid (ascorbate by HO2/O2 radicals. A pulse radiolysis and stopped-flow photolysis study. J. Phys. Chem. 87, 1809. [Pg.49]

Since many essential nutrients (e.g., monosaccharides, amino acids, and vitamins) are water-soluble, they have low oil/water partition coefficients, which would suggest poor absorption from the GIT. However, to ensure adequate uptake of these materials from food, the intestine has developed specialized absorption mechanisms that depend on membrane participation and require the compound to have a specific chemical structure. Since these processes are discussed in Chapter 4, we will not dwell on them here. This carrier transport mechanism is illustrated in Fig. 9C. Absorption by a specialized carrier mechanism (from the rat intestine) has been shown to exist for several agents used in cancer chemotherapy (5-fluorouracil and 5-bromouracil) [37,38], which may be considered false nutrients in that their chemical structures are very similar to essential nutrients for which the intestine has a specialized transport mechanism. It would be instructive to examine some studies concerned with riboflavin and ascorbic acid absorption in humans, as these illustrate how one may treat urine data to explore the mechanism of absorption. If a compound is... [Pg.48]

A chemical reaction subsequent to a fast (reversible) electrode reaction (Eq. 5.6.1, case b) can consume the product of the electrode reaction, whose concentration in solution thus decreases. This decreases the overpotential of the overall electrode process. This mechanism was proposed by R. Brdicka and D. H. M. Kern for the oxidation of ascorbic acid, converted by a fast electrode reaction at the mercury electrode to form dehydro-ascorbic acid. An equilibrium described by the Nernst equation is established at the electrode between the initial substance and this intermediate product. Dehydroascorbic acid is then deactivated by a fast chemical reaction with water to form diketogulonic acid, which is electroinactive. [Pg.361]

The anticancer activity of platinum(IV) complexes, and the belief that reduction is needed to initiate this activity, had generated substantial interest in the rates and mechanism of reduction by biologically relevant reductants such as thiols, ascorbic acid, and methionine. Reduction of platinum(IV) to platinum(II) usually proceeds as a single two-electron step and is usually first-order with respect to both platinum(IV) and reductant concentrations. [Pg.731]

Recently, the decomposition of N-sulfonyloxy-AAF under aqueous conditions has been further examined and appears to be consistent with this overall mechanism (50). That is, the major products appear to be 1- and 3-sulfonyloxy-AAF with small amounts of AAF, 4-hydroxy-AAF, and a dimer formed by addition of the electrophile onto the aromatic ring of another AAF molecule (51). Furthermore, the relative yields of AAF could be increased by addition of the reducing agent, ascorbic acid (52). [Pg.348]

Nitrosoarenes are readily formed by the oxidation of primary N-hydroxy arylamines and several mechanisms appear to be involved. These include 1) the metal-catalyzed oxidation/reduction to nitrosoarenes, azoxyarenes and arylamines (144) 2) the 02-dependent, metal-catalyzed oxidation to nitrosoarenes (145) 3) the 02-dependent, hemoglobin-mediated co-oxidation to nitrosoarenes and methe-moglobin (146) and 4) the 0 2-dependent conversion of N-hydroxy arylamines to nitrosoarenes, nitrosophenols and nitroarenes (147,148). Each of these processes can involve intermediate nitroxide radicals, superoxide anion radicals, hydrogen peroxide and hydroxyl radicals, all of which have been observed in model systems (149,151). Although these radicals are electrophilic and have been suggested to result in DNA damage (151,152), a causal relationship has not yet been established. Nitrosoarenes, on the other hand, are readily formed in in vitro metabolic incubations (2,153) and have been shown to react covalently with lipids (154), proteins (28,155) and GSH (17,156-159). Nitrosoarenes are also readily reduced to N-hydroxy arylamines by ascorbic acid (17,160) and by reduced pyridine nucleotides (9,161). [Pg.360]


See other pages where Ascorbic acid mechanism is mentioned: [Pg.248]    [Pg.491]    [Pg.13]    [Pg.386]    [Pg.586]    [Pg.164]    [Pg.169]    [Pg.352]    [Pg.162]    [Pg.232]    [Pg.123]    [Pg.112]    [Pg.270]    [Pg.193]    [Pg.262]    [Pg.585]    [Pg.586]    [Pg.587]    [Pg.28]    [Pg.76]    [Pg.114]    [Pg.130]    [Pg.218]    [Pg.235]    [Pg.49]    [Pg.49]    [Pg.56]    [Pg.731]    [Pg.915]    [Pg.65]    [Pg.255]    [Pg.827]    [Pg.213]   
See also in sourсe #XX -- [ Pg.54 , Pg.57 ]

See also in sourсe #XX -- [ Pg.74 , Pg.75 , Pg.76 , Pg.77 , Pg.78 , Pg.79 , Pg.80 ]




SEARCH



Acidizing mechanisms

Mechanisms acids

© 2024 chempedia.info