Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

As elastomers

Table 7.7 lists the common names and the comonomers for several addition copolymers that are widely used as elastomers, fibers, or films. [Pg.469]

Polymer systems have been classified according to glass-transition temperature (T), melting poiat (T ), and polymer molecular weight (12) as elastomers, plastics, and fibers. Fillers play an important role as reinforcement for elastomers. They are used extensively ia all subclasses of plastics, ie, geaeral-purpose, specialty, and engineering plastics (qv). Fillets are not, however, a significant factor ia fibers (qv). [Pg.368]

Table 11 shows U.S. production and sales of the principal types of plastics and resins. Some materials are used both as plastics, ie, bulk resin, and in other apphcations. For example, nylon is used in fibers, urethanes as elastomers. Only their use as plastics is given in Table 11 their uses in other apphcations are Hsted with those apphcations. [Pg.369]

ALLOYS, PURE silicon) and in epitaxial siUcon deposition (see Electronic materials Integrated circuits Semiconductors) as selective reducing agents as monomers and as elastomer intermediates (see Elastomers, SYNTHETIC). Not least is the use of these materials as intermediates for production of other silanes and sihcones. [Pg.21]

Bis(a,a-dimethylbenzyl)diphenylamiQe [1008-67-1] (14) has only a slight tendency to stain and has been recommended for use ia plastics as weU as elastomers. [Pg.226]

Many random copolymers have found commercial use as elastomers and plastics. For example, SBR (62), poly(butadiene- (9-styrene) [9003-55-8] has become the largest volume synthetic mbber. It can be prepared ia emulsion by use of free-radical initiators, such as K2S20g or Fe /ROOH (eq. 18), or in solution by use of alkyl lithium initiators. Emulsion SBR copolymers are produced under trade names by such companies as American Synthetic Rubber (ASPC), Armtek, B. F. Goodrich (Ameripool), and Goodyear (PHoflex) solution SBR is manufactured by Firestone (Stereon). The total U.S. production of SBR in 1990 was 581,000 t (63). [Pg.184]

In the early stages of development of polypropylene rubbers, particularly butyl rubber, were used to reduce the brittleness of polypropylene. Their use declined for some years with the development of the polypropylene copolymers but interest was greatly renewed in the 1970s. This interest has been centred largely around the ethylene-propylene rubbers which are reasonably compatible in all proportions with polypropylene. At first the main interest was with blends in which the rubber content exceeded 50% of the blend and such materials have been designated as thermoplastic polyolefin elastomers (discussed in Section 11.9.1). There is also increasing interest in compounds with less than 50% rubber, often referred to as elastomer-modified thermoplastics. It is of interest to note... [Pg.260]

Ethylene-cyclo-olefin copolymers have been known since 1954 (DuPont USP2 721 189) but these materials only became of importance in the late 1990s with the development of copolymers of ethylene and 2-norbomene by Hoechst and Mitsui using metallocene technology developed by Hoechst. The product is marketed as Topas by Ticona. By adjustment of the monomer ratios polymers with a wide range of Tg values may be obtained including materials that are of potential interest as thermoplastic elastomers. This section considers only thermoplastic materials, cyclo-olefins of interest as elastomers are considered further in Section 11.10. [Pg.280]

Polybutadiene was first prepared in the early years of the 20th century by such methods as sodium-catalysed polymerisation of butadiene. However, the polymers produced by these methods and also by the later free-radical emulsion polymerisation techniques did not possess the properties which made them desirable rubbers. With the development of the Ziegler-Natta catalyst systems in the 1950s, it was possible to produce polymers with a controlled stereo regularity, some of which had useful properties as elastomers. [Pg.290]

In nonrigid ionomers, such as elastomers in which the Tg is situated below ambient temperature, even greater changes can be produced in tensile properties by increase of ion content. As one example, it has been found that in K-salts of a block copolymer, based on butyl acrylate and sulfonated polystyrene, both the tensile strength and the toughness show a dramatic increase as the ion content is raised to about 6 mol% [10]. Also, in Zn-salts of a butyl acrylate/acrylic acid polymer, the tensile strength as a function of the acrylic acid content was observed to rise from a low value of about 3 MPa for the acid copolymer to a maximum value of about 15 MPa for the ionomer having acrylic acid content of 5 wt% [II]. Other examples of the influence of ion content on mechanical properties of ionomers are cited in a recent review article [7],... [Pg.147]

Both types are hydrophobic materials that, depending on the side group arrangements, can exist as elastomers or as microcrystalline fiber- or film-forming materials. Preliminary studies have suggested that these two classes of polyphosphazenes are inert and biocompatible in subcutaneous tissue implantation experiments. [Pg.259]

Inorganic polymers based on alternating main group element-nitrogen skeletons (e.g. I - IV) are of interest for their potential as elastomers, high-temperature oils, electrical conductors, biological molecule carriers, and precursors to ceramic materials (J - 6). [Pg.303]

Poly(HAMCL), unlike PHB or its copolymers, behave as elastomers with crystals acting as physical crosslinks and therefore can be regarded as a class of its own with respect to mechanical properties [53,61,91]. Elongation to break of 250-350% has been reported, and a Young s modulus up to 17 MPa [53,91]. [Pg.270]

The type of rubber chosen depends on the desired mechanical properties and on the end use. If, for example, excellent outdoor weatherability is required, the use if saturated rubbers as elastomer phase is possible. [Pg.290]

Polyphosphazene-based PEMs are potentially attractive materials for both hydrogen/air and direct methanol fuel cells because of their reported chemical and thermal stability and due to the ease of chemically attaching various side chains for ion exchange sites and polymer cross-linking onto the — P=N— polymer backbone. Polyphosphazenes were explored originally for use as elastomers and later as solvent-free solid polymer electrolytes in lithium batteries, and subsequently for proton exchange membranes. [Pg.364]

Rubber is a natural polymer and possesses elastic properties. It is also termed as elastomer and has a variety of uses. It is manufactured from rubber latex which is a colloidal dispersion of rubber in water. This latex is obtained from the bark of rubber tree and is found in India, Srilanka, Indonesia, Malaysia and South America. [Pg.142]

Polybutadiene, produced in emulsion polymerization, is not useful as an elastomer. However, the copolymers with styrene (SBR) and acrylonitrile (Buna-N) are widely used as elastomers. [Pg.213]

Copolymerization allows the synthesis of an almost unlimited number of different products by variations in the nature and relative amounts of the two monomer units in the copolymer product. A prime example of the versatility of the copolymerization process is the case of polystyrene. More than 11 billion pounds per year of polystyrene products are produced annually in the United States. Only about one-third of the total is styrene homopolymer. Polystyrene is a brittle plastic with low impact strength and low solvent resistance (Sec. 3-14b). Copolymerization as well as blending greatly increase the usefulness of polystyrene. Styrene copolymers and blends of copolymers are useful not only as plastics but also as elastomers. Thus copolymerization of styrene with acrylonitrile leads to increased impact and solvent resistance, while copolymerization with 1,3-butadiene leads to elastomeric properties. Combinations of styrene, acrylonitrile, and 1,3-butadiene improve all three properties simultaneously. This and other technological applications of copolymerization are discussed further in Sec. 6-8. [Pg.465]

Several polymers based on 1,3-dienes are used as elastomers. These include styrene-1,3-butadiene (SBR), styrene-1,3-butadiene terpolymer with an unsaturated carboxylic acid (carboxylated SBR), acrylonitrile-1,3-butadiene (NBR or nitrile rubber) (Secs. 6-8a, 6-8e), isobutylene-isoprene (butyl rubber) (Sec. 5-2i-l), and block copolymers of isoprene or... [Pg.699]

Polymers can exist as liquids, as elastomers or as solids but can be transferred into the gaseous state only under very special conditions as are realized in, for example, MALDI mass spectrometry. This is because their molecular weight is so high that thermal degradation sets in before they start to evaporate. Only a few polymers are technically applied in the liquid state (silicon oils, specidty rubbers) but most polymers are applied either as elastomers, or as rigid amorphous or semicrystalline solids. [Pg.11]

Most polymers are applied either as elastomers or as solids. Here, their mechanical properties are the predominant characteristics quantities like the elasticity modulus (Young modulus) E, the shear modulus G, and the temperature-and frequency dependences thereof are of special interest when a material is selected for an application. The mechanical properties of polymers sometimes follow rules which are quite different from those of non-polymeric materials. For example, most polymers do not follow a sudden mechanical load immediately but rather yield slowly, i.e., the deformation increases with time ( retardation ). If the shape of a polymeric item is changed suddenly, the initially high internal stress decreases slowly ( relaxation ). Finally, when an external force (an enforced deformation) is applied to a polymeric material which changes over time with constant (sinus-like) frequency, a phase shift is observed between the force (deformation) and the deformation (internal stress). Therefore, mechanic modules of polymers have to be expressed as complex quantities (see Sect. 2.3.5). [Pg.21]

Polyurethanes are used for the fabrication of fibers, while crosslinked polyurethanes are employed as lacquers and adhesives, as coatings for textiles and paper, and as elastomers and foams. [Pg.321]

Processing of coatings, paints, inks, and adhesives, and thermoplastics as well as elastomers in film, sheet, and other forms... [Pg.285]


See other pages where As elastomers is mentioned: [Pg.1530]    [Pg.376]    [Pg.483]    [Pg.365]    [Pg.245]    [Pg.61]    [Pg.62]    [Pg.335]    [Pg.2]    [Pg.3]    [Pg.4]    [Pg.23]    [Pg.217]    [Pg.67]    [Pg.49]    [Pg.374]    [Pg.150]    [Pg.67]    [Pg.437]    [Pg.533]    [Pg.738]    [Pg.742]    [Pg.449]    [Pg.61]    [Pg.23]    [Pg.251]   
See also in sourсe #XX -- [ Pg.153 ]




SEARCH



A Review of Elastomers Used for Oilfield Sealing Environments

An Additional Rapid Infrared Method for the Quantitative Analysis of NCO Present in a Polyurethane Elastomer

As Polyurethane Elastomer Without or With Added Polyisocyanates

Compaction as a part of the mechanism in incorporating carbon black into an elastomer

Dielectric Elastomers as EAPs Models

Dielectric Elastomers as Electroactive Polymers (EAPs) Fundamentals

Elastomers, as adhesives

Example Calculation for a Typical Polyurethane Elastomer Synthesis

Gelatin as a Physically Cross-linked Elastomer

General Analysis of Miscellaneous Elements in a Polyurethane Elastomer

The Mix A Nanocomposite of Elastomer and Filler

Thermoplastic Polyurethane Elastomers as Hydraulic Seal Materials

Unreacted NCO Groups in a Polyurethane Elastomer

© 2024 chempedia.info