Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryls oxidative addition

The reactions of the second class are carried out by the reaction of oxidized forms[l] of alkenes and aromatic compounds (typically their halides) with Pd(0) complexes, and the reactions proceed catalytically. The oxidative addition of alkenyl and aryl halides to Pd(0) generates Pd(II)—C a-hondi (27 and 28), which undergo several further transformations. [Pg.15]

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

Success of the reactions depends considerably on the substrates and reaction Conditions. Rate enhancement in the coupling reaction was observed under high pressure (10 kbar)[l 1[. The oxidative addition of aryl halides to Pd(0) is a highly disfavored step when powerful electron donors such as OH and NHt reside on aromatic rings. Iodides react smoothly even in the absence of a... [Pg.127]

Usually, iodides and bromides are used for the carbonylation, and chlorides are inert. I lowever, oxidative addition of aryl chlorides can be facilitated by use of bidcntatc phosphine, which forms a six-membered chelate structure and increa.scs (he electron density of Pd. For example, benzoate is prepared by the carbonylation of chlorobenzene using bis(diisopropylphosphino)propane (dippp) (456) as a ligand at 150 [308]. The use of tricyclohexylphosphine for the carbonylation of neat aryl chlorides in aqueous KOH under biphasic conditions is also recommended[309,310]. [Pg.190]

Allylic acetates are widely used. The oxidative addition of allylic acetates to Pd(0) is reversible, and their reaction must be carried out in the presence of bases. An important improvement in 7r-allylpalladium chemistry has been achieved by the introduction of allylic carbonates. Carbonates are highly reactive. More importantly, their reactions can be carried out under neutral con-ditions[13,14]. Also reactions of allylic carbamates[14], allyl aryl ethers[6,15], and vinyl epoxides[16,17] proceed under neutral conditions without addition of bases. [Pg.292]

Tandem cyclization/3-substitution can be achieved starting with o-(trifluoro-acetamido)phenylacetylenes. Cyclization and coupling with cycloalkenyl trif-lates can be done with Pd(PPh3)4 as the catalyst[9]. The Pd presumably cycles between the (0) and (II) oxidation levels by oxidative addition with the triflate and the reductive elimination which completes the 3-alkenylation. The N-protecting group is removed by solvolysis under the reaction conditions, 3-Aryl groups can also be introduced using aryl iodides[9]. [Pg.23]

Lithiation at C2 can also be the starting point for 2-arylatioii or vinylation. The lithiated indoles can be converted to stannanes or zinc reagents which can undergo Pd-catalysed coupling with aryl, vinyl, benzyl and allyl halides or sulfonates. The mechanism of the coupling reaction involves formation of a disubstituted palladium intermediate by a combination of ligand exchange and oxidative addition. Phosphine catalysts and salts are often important reaction components. [Pg.98]

The best procedures for 3-vinylation or 3-arylation of the indole ring involve palladium intermediates. Vinylations can be done by Heck reactions starting with 3-halo or 3-sulfonyloxyindoles. Under the standard conditions the active catalyst is a Pd(0) species which reacts with the indole by oxidative addition. A major con.sideration is the stability of the 3-halo or 3-sulfonyloxyindoles and usually an EW substituent is required on nitrogen. The range of alkenes which have been used successfully is quite broad and includes examples with both ER and EW substituents. Examples are given in Table 11.3. An alkene which has received special attention is methyl a-acetamidoacrylate which is useful for introduction of the tryptophan side-chain. This reaction will be discussed further in Chapter 13. [Pg.109]

Dehalogenation of monochlorotoluenes can be readily effected with hydrogen and noble metal catalysts (34). Conversion of -chlorotoluene to Ncyanotoluene is accompHshed by reaction with tetraethyl ammonium cyanide and zero-valent Group (VIII) metal complexes, such as those of nickel or palladium (35). The reaction proceeds by initial oxidative addition of the aryl haHde to the zerovalent metal complex, followed by attack of cyanide ion on the metal and reductive elimination of the aryl cyanide. Methylstyrene is prepared from -chlorotoluene by a vinylation reaction using ethylene as the reagent and a catalyst derived from zinc, a triarylphosphine, and a nickel salt (36). [Pg.53]

Perfluoroalkyl or -aryl halides undergo oxidative addition with metal vapors to form nonsolvated fluonnated organometallic halides and this topic has been die subject of a review [289] Pentafluorophenyl halides react with Rieke nickel, cobalt, and iron to give bispentafluorophenylmetal compounds, which can be isolated in good yields as liquid complexes [290] Rieke nickel can also be used to promote the reaction of pentafluorophenyl halides with acid halides [297] (equation 193)... [Pg.718]

The Stille coupling of an aryl triflate normally calls for the addition of at least one equivalent of LiCl. Presumably, the transmetallation is facilitated by replacing triflate with CP at the palladium intermediate generated from oxidative addition. As Stille demonstrated in 1988, 4-quinolinyl triflate 100 was coupled with phenylstannane 101 in the presence of Pd(Ph3P)4 and LiCl in refluxing 1,4-dioxane to furnish biaryl 102, which was used as an intermediate for the first total synthesis of antibiotic amphimedine (88JA4051). [Pg.17]

This reaction is not a bona fide Heck reaction per se for two reasons (a) the starting material underwent a Hg Pd transmetallation first rather than the oxidative addition of an aryl halide or triflate to palladium(O) (b) instead of undergoing a elimination step to give an enone, transformation 134 136... [Pg.23]

The mechanism of action of the cyanation reaction is considered to progress as follows an oxidative addition reaction occurs between the aryl halide and a palladium(O) species to form an arylpalladium halide complex which then undergoes a ligand exchange reaction with CuCN thus transforming to an arylpalladium cyanide. Reductive elimination of the arylpalladium cyanide then gives the aryl cyanide. [Pg.26]

The electrophilic character of the palladium atom in the complexes formed by oxidative addition of aryl halides and alkenyl halides to palladium(o) complexes can be exploited in useful ways. [Pg.573]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

Palladium(II) complexes provide convenient access into this class of catalysts. Some examples of complexes which have been found to be successful catalysts are shown in Scheme 11. They were able to get reasonable turnover numbers in the Heck reaction of aryl bromides and even aryl chlorides [22,190-195]. Mechanistic studies concentrated on the Heck reaction [195] or separated steps like the oxidative addition and reductive elimination [196-199]. Computational studies by DFT calculations indicated that the mechanism for NHC complexes is most likely the same as that for phosphine ligands [169], but also in this case there is a need for more data before a definitive answer can be given on the mechanism. [Pg.15]

The general mechanism of coupling reactions of aryl-alkenyl halides with organometallic reagents and nucleophiles is shown in Fig. 9.4. It contains (a) oxidative addition of aryl-alkenyl halides to zero-valent transition metal catalysts such as Pd(0), (b) transmetallation of organometallic reagents to transition metal complexes, and (c) reductive elimination of coupled product with the regeneration of the zero-valent transition metal catalyst. [Pg.483]

Transition metal complexes that are easy to handle and store are usually used for the reaction. The catalytically active species such as Pd(0) and Ni(0) can be generated in situ to enter the reaction cycle. The oxidative addition of aryl-alkenyl halides can occur to these species to generate Pd(II) or Ni(II) complexes. The relative reactivity for aryl-alkenyl halides is RI > ROTf > RBr > RC1 (R = aryl-alkenyl group). Electron-deficient substrates undergo oxidative addition more readily than those electron-rich ones because this step involves the oxidation of the metal and reduction of the organic aryl-alkenyl halides. Usually... [Pg.483]

The general catalytic cycle for the coupling of aryl-alkenyl halides with alkenes is shown in Fig. 9.6. The first step in this catalytic cycle is the oxidative addition of aryl-alkenyl halides to Pd(0). The activity of the aryl-alkenyl halides still follows the order RI > ROTf > RBr > RC1. The olefin coordinates to the Pd(II) species. The coordinated olefin inserts into Pd—R bond in a syn fashion, p-Hydrogen elimination can occur only after an internal rotation around the former double bond, as it requires at least one /I-hydrogen to be oriented syn perpendicular with respect to the halopalladium residue. The subsequent syn elimination yields an alkene and a hydridopalladium halide. This process is, however, reversible, and therefore, the thermodynamically more stable (E)-alkene is generally obtained. Reductive elimination of HX from the hydridopalladium halide in the presence of a base regenerates the catalytically active Pd(0), which can reenter the catalytic cycle. The oxidative addition has frequently assumed to be the rate-determining step. [Pg.486]

The possible mechanism for the reactions involving stoichiometric amount of preformed Ni(0) complexes is shown in Fig. 9.8. The first step of the mechanism involves the oxidative addition of aryl halides to Ni(0) to form aryl Ni(II) halides. Disproportion of two aryl Ni(II) species leads to a diaryl Ni(II) species and a Ni(II) halide. This diaryl Ni(II) species undergoes rapid reductive elimination to form the biaryl product. The generated Ni(0) species can reenter the catalytic cycle. [Pg.487]

This cycle involves, first, a monoelectronic transfer from the nickel (0) complex to the aryl halide affording a Ni(I) complex and then an oxidative addition affording a 16 electron-nickel (II) which undergoes a nucleophilic substitution of Nu-, then a monoelectronic transfer occurs once again with a second aryl halide, and, last, a reductive elimination of the arylated nucleophile regenerates the active Ni(I) species. [Pg.244]

The bipyridyl ligand, with 80 %, gives the best catalyst, probably because it affords the best balance between the a-donor and rt-acceptor characters which favours respectively the oxidative addition of the aryl bromide and the reductive elimination of the aryl ether at the nickel center. [Pg.248]


See other pages where Aryls oxidative addition is mentioned: [Pg.4]    [Pg.6]    [Pg.126]    [Pg.137]    [Pg.209]    [Pg.227]    [Pg.238]    [Pg.251]    [Pg.36]    [Pg.111]    [Pg.85]    [Pg.182]    [Pg.183]    [Pg.506]    [Pg.249]    [Pg.494]    [Pg.2]    [Pg.109]    [Pg.155]    [Pg.267]    [Pg.567]    [Pg.584]    [Pg.146]    [Pg.487]    [Pg.488]    [Pg.489]    [Pg.173]    [Pg.177]    [Pg.240]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Aryl chlorides oxidative addition

Aryl derivatives oxidative addition

Aryl halides oxidative addition

Aryl iodides, oxidative addition

Aryl iodides, oxidative addition palladium complexes

Aryl triflates oxidative addition

Aryl-Metal Complexes by Oxidative Addition of Arenes

Arylic oxidation

Arylpalladium complexes aryl halide oxidative additions

Aryls oxides

Cross-coupling reactions aryl halide oxidative addition

Diphosphines aryl halide oxidative addition

Direct Oxidative Addition of Reactive Zinc to Functionalized Alkyl, Aryl, and Vinyl Halides

Monophosphine ligands aryl halide oxidative addition

Oxidative addition aryl halides, amination reactions

Oxidative addition of aryl halides

Oxidative addition of aryl iodides

Oxidative addition of aryl triflates

Oxidative arylation

Palladium complexes aryl halide oxidative addition

© 2024 chempedia.info