Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Artifacts, value

Optimization should be viewed as a tool to aid in decision making. Its purpose is to aid in the selection of better values for the decisions that can be made by a person in solving a problem. To formulate an optimization problem, one must resolve three issues. First, one must have a representation of the artifact that can be used to determine how the artifac t performs in response to the decisions one makes. This representation may be a mathematical model or the artifact itself. Second, one must have a way to evaluate the performance—an objective function—which is used to compare alternative solutions. Third, one must have a method to search for the improvement. This section concentrates on the third issue, the methods one might use. The first two items are difficult ones, but discussing them at length is outside the scope of this sec tion. [Pg.483]

Earlier analyses making use of AH vs. AS plots generated many p values in the experimentally accessible range, and at least some of these are probably artifacts resulting from the error correlation in this type of plot. Exner s treatment yields p values that may be positive or negative and that are often experimentally inaccessible. Some authors have associated isokinetic relationships and p values with specific chemical phenomena, particularly solvation effects and solvent structure, but skepticism seems justified in view of the treatments of Exner and Krug et al. At the present time an isokinetic relationship should not be claimed solely on the basis of a plot of AH vs. A5, but should be examined by the Exner or Krug methods. [Pg.371]

Pandya et al. have used extended X-ray ascription fine structure (EXAFS) to study both cathodically deposited -Ni(OH)2 and chemically prepared / -Ni(OH)2 [44], Measurements were done at both 77 and 297 K. The results for / -Ni(OH)2 are in agreement with the neutron diffraction data [22]. In the case of -Ni(OH)2 they found a contraction in the first Ni-Ni bond distance in the basal plane. The value was 3.13A for / -Ni(OH)2 and 3.08A for a-Ni(OH)2. The fact that a similar significant contraction of 0.05A was seen at both 77 and 297K when using two reference compounds (NiO and / -Ni(OH)2) led them to conclude that the contraction was a real effect and not an artifact due to structural disorder. They speculate that the contraction may be due to hydrogen bonding of OH groups in the brucite planes with intercalated water molecules. These ex-situ results on a - Ni(OH)2 were compared with in-situ results in I mol L"1 KOH. In the ex-situ experiments the a - Ni(OH)2 was prepared electrochemi-cally, washed with water and dried in vac-... [Pg.141]

There is indeed some disagreement as to whether values of AC carry chemical meaning. Although many workers5 believe they do, others6 would argue that these small effects are instead more likely the artifacts of an incomplete theoretical model or a chemical path that intrudes to a minor extent near one of the temperature extremes. It seems that the matter cannot be settled in any general way. [Pg.161]

Practically all values of 3 within the experimental interval claimed in the literature (1-5, 115-119, 153) have been shown to be artifacts (148, 149, 163) resulting from improper statistical treatment (see Sec. IV). Petersen thus believed (148) that actually no such value had been reported, and the meaning was offered that the isokinetic temperature probably is not accessible experimentally (149, 188). This view was supported by the existence of negative... [Pg.456]

The Production Department was not amused, because lower values had been expected. Quality Control was blamed for using an insensitive, unse-lective, and imprecise test, and thereby unnecessarily frightening top management. This outcome had been anticipated, and a better method, namely polarography, was already being set up. The same samples were run, this time in duplicate, with much the same results. A relative confidence interval of 25% was assumed. Because of increased specificity, there were now less doubts as to the amounts of this particular heavy metal that were actually present. To rule out artifacts, the four samples were sent to outside laboratories to do repeat tests with different methods X-ray fluorescence (XRFi °) and inductively coupled plasma spectrometry (ICP). The confidence limits were determined to be 10% resp. 3%. Figure 4.23 summarizes the results. Because each method has its own specificity pattern, and is subject to intrinsic artifacts, a direct statistical comparison cannot be performed without first correcting the apparent concentrations in order to obtain presumably true... [Pg.229]

Note. If the N dimensions yield very different numerical values, such as 105 3 mmol/L, 0.0034 0.02 meter, and 13200 600 pg/ml, the Euclidian distances are dominated by the contributions due to those dimensions for which the differences A-B, AS, or BS are numerically large. In such cases it is recommended that the individual results are first normalized, i.e., x = (x - Xn,ean)/ 5 t, where Xmean and Sx are the mean and standard deviation over all objects for that particular dimension X, by using option (Transform)/(Normalize) in program DATA. Use option (Transpose) to exchange columns and rows beforehand and afterwards The case presented in sample file SIEVEl.dat is different the individual results are wt-% material in a given size class, so that the physical dimension is the same for all rows. Since the question asked is are there differences in size distribution , normalization as suggested above would distort tbe information and statistics-of-small-numbers artifacts in the poorly populated size classes would become overemphasized. [Pg.371]

Exponential decay is quite regular starting with a given amount of a substance at t = 0, this amount will fall to V2 its original value after one half-life, to 1/4 after two half-lives, Vs after three half-lives, and so forth. This regularity has its usefulness, and the decay of has been widely employed to date archeological artifacts [3]. [Pg.112]

Until recently, an erroneous structure for SOCI2 has been widely used in the literature according to which ClSCl 114° and OSCl 106°. These angles originated from an early (1938) electron diffraction work in which values smaller than 114° were simply not tested for ClSCl. Modern techniques of electron diffraction structure analysis are more reliable in avoiding such artifacts. [Pg.53]

The current efficiencies for the different reaction products CO2, formaldehyde, and formic acid obtained upon potential-step methanol oxidation are plotted in Fig. 13.7d. The CO2 current efficiency (solid line) is characterized by an initial spike of up to about 70% directly after the potential step, followed by a rapid decay to about 54%, where it remains for the rest of the measurement. The initial spike appearing in the calculated current efficiency for CO2 formation can be at least partly explained by a similar artifact as discussed for formaldehyde oxidation before, caused by the fact that oxidation of the pre-formed COacurrent efficiency. The current efficiency for formic acid oxidation steps to a value of about 10% at the initial period of the measurement, and then decreases gradually to about 5% at the end of the measurement. Finally, the current efficiency for formaldehyde formation, which was not measured directly, but calculated from the difference between total faradaic current and partial reaction currents for CO2 and formic acid formation, shows an apparently slower increase during the initial phase and then remains about constant (final value about 40%). The imitial increase is at least partly caused by the same artifact as discussed above for CO2 formation, only in the opposite sense. [Pg.441]

Sampling artifacts. The use of in situ pumps to collect water samples for " Th analysis permits simultaneous collection (and separation) of different particle fractions as well as dissolved Th. As pumping systems have been modified to permit determination of POC on the pump filters, it became possible to compare POC determined from the pump samples with conventional POC determinations made on small volume samples (0.5 - 2 L) taken from hydrocasts. The JGOFS data from multiple studies show large discrepancies between these two sample collection methods, with pump POC values 3 to 100 times lower than bottle POC values. Possible artifacts with each approach have been identified. For example Moran et al. (1999) have suggested that DOC is adsorbed onto... [Pg.477]


See other pages where Artifacts, value is mentioned: [Pg.585]    [Pg.585]    [Pg.657]    [Pg.113]    [Pg.74]    [Pg.74]    [Pg.278]    [Pg.56]    [Pg.497]    [Pg.497]    [Pg.71]    [Pg.173]    [Pg.286]    [Pg.696]    [Pg.206]    [Pg.540]    [Pg.253]    [Pg.439]    [Pg.457]    [Pg.53]    [Pg.138]    [Pg.400]    [Pg.257]    [Pg.174]    [Pg.34]    [Pg.47]    [Pg.429]    [Pg.457]    [Pg.141]    [Pg.281]    [Pg.439]    [Pg.386]    [Pg.386]    [Pg.340]    [Pg.121]    [Pg.284]    [Pg.37]    [Pg.245]    [Pg.432]    [Pg.480]   
See also in sourсe #XX -- [ Pg.434 ]




SEARCH



Artifacts

© 2024 chempedia.info