Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic polyarylates

Two classes of polymers have been used for producing high-tonnage thermally resistant plastics aromatic polyarylates and polyamides [17]. [Pg.116]

Two classes of polymers have been used for producing high-tonnage thermally resistant plastics aromatic polyarylates and polyamides [17], Starting with liiese and mutually complementing the properties, materials of high operation properties, and thermo-stable plastics of constmctional assignment in the first turn, have been produced. [Pg.109]

Noncrystalline aromatic polycarbonates (qv) and polyesters (polyarylates) and alloys of polycarbonate with other thermoplastics are considered elsewhere, as are aHphatic polyesters derived from natural or biological sources such as poly(3-hydroxybutyrate), poly(glycoHde), or poly(lactide) these, too, are separately covered (see Polymers, environmentally degradable Sutures). Thermoplastic elastomers derived from poly(ester—ether) block copolymers such as PBT/PTMEG-T [82662-36-0] and known by commercial names such as Hytrel and Riteflex are included here in the section on poly(butylene terephthalate). Specific polymers are dealt with largely in order of volume, which puts PET first by virtue of its enormous market volume in bottie resin. [Pg.292]

Solvent for Displacement Reactions. As the most polar of the common aprotic solvents, DMSO is a favored solvent for displacement reactions because of its high dielectric constant and because anions are less solvated in it (87). Rates for these reactions are sometimes a thousand times faster in DMSO than in alcohols. Suitable nucleophiles include acetyUde ion, alkoxide ion, hydroxide ion, azide ion, carbanions, carboxylate ions, cyanide ion, hahde ions, mercaptide ions, phenoxide ions, nitrite ions, and thiocyanate ions (31). Rates of displacement by amides or amines are also greater in DMSO than in alcohol or aqueous solutions. Dimethyl sulfoxide is used as the reaction solvent in the manufacture of high performance, polyaryl ether polymers by reaction of bis(4,4 -chlorophenyl) sulfone with the disodium salts of dihydroxyphenols, eg, bisphenol A or 4,4 -sulfonylbisphenol (88). These and related reactions are made more economical by efficient recycling of DMSO (89). Nucleophilic displacement of activated aromatic nitro groups with aryloxy anion in DMSO is a versatile and useful reaction for the synthesis of aromatic ethers and polyethers (90). [Pg.112]

Polycarbonates. Polyarjiates are aromatic polyesters commonly prepared from aromatic dicarboxylic acids and diphenols. One of the most important polyarylates is polycarbonate, a polyester of carbonic acid. Polycarbonate composite is extensively used in the automotive industry because the resin is a tough, corrosion-resistant material. Polycarbonates (qv) can be prepared from aUphatic or aromatic materials by two routes reaction of a dihydroxy compound with phosgene accompanied by Hberation ofHCl(eq. 5) ... [Pg.37]

Most polyesters (qv) are based on phthalates. They are referred to as aromatic-aHphatic or aromatic according to the copolymerized diol. Thus poly(ethylene terephthalate) [25038-59-9] (PET), poly(butyelene terephthalate) [24968-12-5] (PBT), and related polymers are termed aromatic-aHphatic polyester resins, whereas poly(bisphenol A phthalate)s are called aromatic polyester resins or polyarylates PET and PBT resins are the largest volume aromatic-aHphatic products. Other aromatic-aHphatic polyesters (65) include Eastman Kodak s Kodar resin, which is a PET resin modified with isophthalate and dimethylolcyclohexane. Polyarylate resins are lower volume specialty resins for high temperature (HDT) end uses (see HeaT-RESISTANT POLYAffiRS). [Pg.267]

Commercial aromatic polyester resins or polyarylates are a combination of bisphenol A with isophthahe acid or terephthahe acid (79). The resins are made commercially by solution polymerization or melt transesterification (47). [Pg.269]

Highly aromatic thermoplastic polyesters first beeame available in the 1960s but the original materials were somewhat difficult to process. These were followed in the 1970s by somewhat more processable materials, commonly referred to as polyarylates. More recently there has been considerable activity in liquid crystal polyesters, which are in interest as self-reinforeing heat-resisting engineering thermoplastics. [Pg.695]

Polyarylates are highly aromatic linear polyesters with high values of (up to 194°C has been quoted) and which are self-extinguishing. [Pg.937]

Polyarylate It is a form of aromatic polyester (amorphous) exhibiting an excellent balance of properties such as stiffness, UV resistance, combustion resistance, high heat-distortion temperature, low notch sensitivity, and good electrical insulating values. It is used for solar glazing, safety equipment, electrical hardware, transportation components and in the construction industry. [Pg.428]

Amorphous bisphenol-A polyarylates are soluble in dioxane and in chlorinated solvents such as CH2C12, 1,2-dichlororethane, 1,1,2-trichloroethane, and 1,1,2,2-tetrachloroethane while semicrystalline and liquid crystalline wholly aromatic polyesters are only sparingly soluble in solvents such as tetrachloroethane-phenol mixtures or pentafluorophenol, which is often used for inherent viscosity determinations. [Pg.91]

Ardel D-100 bisphenol-A polyarylate, 48 Arenesulfonyl chlorides, 329 Aromatic-aliphatic alternating... [Pg.577]

We initiated our work by examining nucleophilic aromatic substitution, a somewhat difficult reaction to effect in other than activated aryl halides as substrates. It occurred to us that if polyhaloaromatics could be made to suffer disubstitution under mild solid-liquid PTC conditions, then they might be used as comonomers with a variety of bisnucliophiles to prepare halogenated polyaryl-ethers, sulfides, sulfone-ethers as well as other interesting polymers which are at present synthesized only with some difficulty. [Pg.129]

Polyarylates (aromatic polyesters) 175 Good toughness, UV stability, flame retarder... [Pg.609]

If solutions of CgQ in aromatic hydrocarbons are treated with Lewis acids, such as AICI3, AlBrj, FeBrj, FeClj, GaClj or SbClj, then a fullerylation of aromatics takes place (Scheme 8.11) [66, 88, 90, 91], In this case, the Lewis acid serves as a catalyst and increases the electrophilicity of the fullerene. Mixtures of polyarylated fullerenes are obtained. Depending on the reaction conditions and the aromatic used for the fullerylation, up to 16 aryl groups are covalently bound to the fullerene core [66, 88,... [Pg.263]

In situ polycondensation leads to aromatic polyamides or polyesters dispersed within the matrix of polyarylate. Mechanical and thermal properties of the films formed... [Pg.130]

Polyarylates (PAr) are wholly aromatic polyesters derived from aromatic dicarboxylic acids and diphenols or their derivatives. They are amorphous in nature with good injection moldability. Figure 7 shows the typical formula structure of PAr. [Pg.306]

POLYARYLATES. These are clear, amorphous thermoplastics that combine clarity, high heat deflection temperatures, high impact strength, good surface hardness, and good electrical properties with inherent ultraviolet stability and flame retardance. No additives or stabilizers are required to provide these properties. Polyarylates are aromatic polyesters that are manufactured from various ratios of iso- and terephthalic acids with bisphenol A.1 The resultant products are free-flowing pellets which can be processed by a variety of thermoplastic techniques in transparent and... [Pg.1334]

Aryl-aryl cross-coupling reactions have been exploited extensively, particularly by Snieckus and coworkers, in the synthesis of polyaryls and other aromatic nuclei243. [Pg.1314]

In recent years, remarkable progress has been made in the syntheses of aromatic and heterocyclic polymers to search a new type of radiation resistant polymers. Sasuga and his coworkers extensively investigated the radiation deterioration of various aromatic polymers at ambient temperature [55-57] and reported the order of radiation resistivity evaluated from the changes in tensile properties as follows polyimide > polyether ether ketone > polyamide > polyetherimide > polyarylate > polysulfone. [Pg.128]

Specialty polymers achieve very high performance and find limited but critical use in aerospace composites, in electronic industries, as membranes for gas and liquid separations, as fire-retardant textile fabrics for firefighters and race-car drivers, and for biomedical applications (as sutures and surgical implants). The most important class of specialty plastics is polyimides. Other specialty polymers include polyetherimide, poly(amide-imide), polybismaleimides, ionic polymers, polyphosphazenes, poly(aryl ether ketones), polyarylates and related aromatic polyesters, and ultrahigh-molecular-weight polyethylene (Fig. 14.9). [Pg.520]

A whole series of high-performance polyester LCPs was introduced in 1985. They were assembled from p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid. Polyarylates (PARs) - amorphous phenolic esters derived from aromatic dicarboxylic acids (mixtures of terephthalic acid and isophthalic acid) and biphenols such as bisphenol A - are produced by Amoco (Ardel ), Celanese (Durel ) and DuPont (Arylon ) at a volume of approx. 2000 t/a. [Pg.460]


See other pages where Aromatic polyarylates is mentioned: [Pg.286]    [Pg.609]    [Pg.56]    [Pg.341]    [Pg.47]    [Pg.48]    [Pg.77]    [Pg.322]    [Pg.241]    [Pg.268]    [Pg.210]    [Pg.297]    [Pg.286]    [Pg.165]    [Pg.320]    [Pg.33]    [Pg.45]    [Pg.146]    [Pg.157]    [Pg.609]    [Pg.351]   
See also in sourсe #XX -- [ Pg.400 , Pg.401 ]




SEARCH



Polyaryl

Polyarylate

Polyarylates

Polyaryls

© 2024 chempedia.info