Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic hydrocarbons electronic structure

Aromatic hydrocarbons are structurally related to benzene or made up of benzene molecules fused together. These molecules are called arenes to distinguish them from alkanes, alkenes, and alkynes. All atoms in arenes lie in the same plane. In other words, aromatic hydrocarbons are flat. Aromatic molecules have electrons in delocalized tt orbitals that are free to migrate throughout the molecule. [Pg.140]

Figure 4.36 Benzene, CeHe, an aromatic hydrocarbon. The structure shown on the spectrum is one way of representing the delocalized electrons they can be shown as three double bonds in one of two resonance structures. A more accurate way of representing them is to draw a circle inside the hexagon, with the circle representing the six delocalized electrons in the molecular orbital. (Copyright Bio-Rad Laboratories, Informatics Division, Sadtler Software and Databases, 1999. All rights reserved.)... Figure 4.36 Benzene, CeHe, an aromatic hydrocarbon. The structure shown on the spectrum is one way of representing the delocalized electrons they can be shown as three double bonds in one of two resonance structures. A more accurate way of representing them is to draw a circle inside the hexagon, with the circle representing the six delocalized electrons in the molecular orbital. (Copyright Bio-Rad Laboratories, Informatics Division, Sadtler Software and Databases, 1999. All rights reserved.)...
Radical cations can be derived from aromatic hydrocarbons or alkenes by one-electron oxidation. Antimony trichloride and pentachloride are among the chemical oxidants that have been used. Photodissociation or y-radiation can generate radical cations from aromatic hydrocarbons. Most radical cations derived from hydrocarbons have limited stability, but EPR spectral parameters have permitted structural characterization. The radical cations can be generated electrochemically, and some oxidation potentials are included in Table 12.1. The potentials correlate with the HOMO levels of the hydrocarbons. The higher the HOMO, the more easily oxidized is the hydrocarbon. [Pg.681]

In recent years it has become clear that the structure of metals and alloys may be described in terms of covalent bonds that resonate among the alternative interatomic positions in the metals, and that this resonance is of greater importance for metals than for substances of any Other class, including the aromatic hydrocarbons. Moreover, the phenomenon of metallic resonance of the valency bonds must be given explicit consideration in the discussion of metallic valency it is necessary in deducing the metallic valency from the number of available electrons and bond orbitals to assign to one orbital a special r le in the metallic resonance. [Pg.230]

Benzo[a]pyrene, a molecule with five, fused, hexagonal rings, is among the most carcinogenic of the polycyclic aromatic hydrocarbons (PAHs). Such biological activity may be related to the electronic structure of benzo[a]pyrene and its metabolites. Ionization energies of these molecules therefore have been investigated with photoelectron spectroscopy [28]. [Pg.43]

Electronic Effects in Metallocenes and Certain Related Systems, 10, 79 Electronic Structure of Alkali Metal Adducts of Aromatic Hydrocarbons, 2, 115 Fast Exchange Reactions of Group I, II, and III Organometallic Compounds, 8,167 Fluorocarbon Derivatives of Metals, 1, 143 Heterocyclic Organoboranes, 2, 257... [Pg.509]

Compared with monocyclic aromatic hydrocarbons and the five-membered azaarenes, the pathways used for the degradation of pyridines are less uniform, and this is consistent with the differences in electronic structure and thereby their chemical reactivity. For pyridines, both hydroxylation and dioxygenation that is typical of aromatic compounds have been observed, although these are often accompanied by reduction of one or more of the double bonds in the pyridine ring. Examples are used to illustrate the metabolic possibilities. [Pg.527]

Quenching rate constants for dienes and quadricyclenes have similar sensitivities to the electronic and structural features of the excited aromatic hydrocarbon. However, during this process quadricyclene isomerizes to nor-boraadiene with a quantum yield of 0.52, whereas dienes usually remain unchanged/10 Hammond has suggested that vibrational energy which is partitioned to the acceptor upon internal conversion of the exciplex can lead to isomerization(10a,103) ... [Pg.457]

Unlike the alkanes, however, the reaction of benzene with the halogens is catalyzed by iron. The relative lack of reactivity in aromatic hydrocarbons is attributed to delocalized double bonds. That is, the second pair of electrons in each of the three possible carbon-to-carbon double bonds is shared by all six carbon atoms rather than by any two specific carbon atoms. Two ways of writing structural formulas which indicate this type of bonding in the benzene molecules are as follows ... [Pg.321]

The structures of aromatic hydrocarbons, like benzene (C6H6), involve sp2 hybridized carbon atoms with pi bonds whose electrons are delocalized over the entire benzene ring. [Pg.401]

Two structures are possible for the interaction of aromatic hydrocarbons with acids.270 In the a-structures a covalent bond is established between the acidic reagent and a particular carbon atom of the benzene ring. The a-structures are essentially classical carbonium ions. In the -structures a non-classical bond is established, not to any particular atom, but to the -electron cloud in general. It is quite likely that both types of structure are represented by actual examples. Thus m-xylene interacts more strongly with hydrogen chloride than does o-xylene, but the difference between the two hydrocarbons is much more pronounced when their interactions with a boron trifluoride-hydrogen fluoride mixture are compared. This is readily understandable... [Pg.141]

Among the recently published works, the one which showed that the cyclic structures of water clusters open up to form a linear structure above a certain threshold electric field value a was a systematic ab initio study on the effect of electric field on structure, energetics, and transition states of trimer, tetramer, and pentamer water clusters (both cyclic and acyclic) [36], Considering c/.v-butadiene as a model system, the strength and the direction of a static electric field has been used to examine the delocalization energy, the probabilities of some local electronic structures, the behavior of electron pairs, and the electronic fluctuations [37]. Another recent work performed by Rai et al. focused on the studies using the DFT and its time-dependent counterpart of effects of uniform static electric field on aromatic and aliphatic hydrocarbons [38],... [Pg.368]

A comprehensive summary of the theoretical contributions over the past 40 years towards the understanding of the relationship between two-dimensional aromaticity (hydrocarbons) and the electronic structure of three-dimensional deltahedral boranes. Note in particular that rearrangement processes and the isocloso problem in metallaboranes have also been discussed.11... [Pg.134]

Heterocycles with conjugated jr-systems have a propensity to react by substitution, similarly to saturated hydrocarbons, rather than by addition, which is characteristic of most unsaturated hydrocarbons. This reflects the strong tendency to return to the initial electronic structure after a reaction. Electrophilic substitutions of heteroaromatic systems are the most common qualitative expression of their aromaticity. However, the presence of one or more electronegative heteroatoms disturbs the symmetry of aromatic rings pyridine-like heteroatoms (=N—, =N+R—, =0+—, and =S+—) decrease the availability of jr-electrons and the tendency toward electrophilic substitution, allowing for addition and/or nucleophilic substitution in yr-deficient heteroatoms , as classified by Albert.63 By contrast, pyrrole-like heteroatoms (—NR—, —O—, and — S—) in the jr-excessive heteroatoms induce the tendency toward electrophilic substitution (see Scheme 19). The quantitative expression of aromaticity in terms of chemical reactivity is difficult and is especially complicated by the interplay of thermodynamic and kinetic factors. Nevertheless, a number of chemical techniques have been applied which are discussed elsewhere.66... [Pg.6]

The aromatic hydrocarbons contain at least one unsaturated ring system with the general structure C6R6, where R is any functional group (see Chap. 1). The parent hydrocarbon of this class of compounds is benzene (C6H6), which exhibits the resonance, or delocalization of electrons, typical of unsaturated cyclic structures. Owing to its resonance energy, benzene is remarkably inert. [Pg.366]

In the pH range of 5 - 10, H20-catalyzed hydrolysis is the predominant mechanism (see Fig. 10.11, Pathway b), resulting in the formation of the (8R,9R)-dihydrodiol (10.133, Fig. 10.30). Thus, aflatoxin B1 exo-8,9-epoxide is possibly the most reactive oxirane of biological relevance. Such an extreme reactivity is mostly due to the electronic influence of 0(7), as also influenced by stereolectronic factors, i.e., the difference between the exo- and endo-epoxides. The structural and mechanistic analogies with the dihydro-diol epoxides of polycyclic aromatic hydrocarbons (Sect. 10.4.4) are worth noting. [Pg.666]

The complex formation of aromatic hydrocarbons with Lewis acids in the presence of hydrogen halide and the colour of the so-called red oils associated with this is the oldest observation which indicates that the interaction is connected with a pronounced effect on the electronic structure of the aromatic hydrocarbons (Gustavson, 1878, 1890, 1903, 1905). [Pg.222]


See other pages where Aromatic hydrocarbons electronic structure is mentioned: [Pg.66]    [Pg.125]    [Pg.142]    [Pg.207]    [Pg.756]    [Pg.60]    [Pg.36]    [Pg.4]    [Pg.477]    [Pg.478]    [Pg.323]    [Pg.658]    [Pg.660]    [Pg.250]    [Pg.128]    [Pg.270]    [Pg.78]    [Pg.390]    [Pg.146]    [Pg.420]    [Pg.78]    [Pg.72]    [Pg.10]    [Pg.277]    [Pg.275]    [Pg.402]    [Pg.140]   
See also in sourсe #XX -- [ Pg.49 , Pg.50 , Pg.51 , Pg.52 ]




SEARCH



Aromatic hydrocarbons structure

Aromatic structures

Aromatics structure

Electron aromatic

Hydrocarbon structure

© 2024 chempedia.info