Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compounds electron transfer

In the case of dissociative electron transfer to aromatic compounds, electron transfer is not necessarily concerted with bond dissociation. The substrate 7t-radical-anion may be an intermediate whose existence can be demonstrated by fast scan cyclic voltammetry in aptotic solvents. At fast scan rates, reversible electron transfer occurs. At slower scan rates, die anodic peak height falls and a second reversible electron transfer step appears due to formation of the radical-anion of the compound formed by replacement of the substituent by hydrogen. Cleavage of the... [Pg.93]

Topics that have formed the subjects of reviews this year include contemporary issues in electron transport research, dynamics of bimolecular photoelectron transfer reactions, photophysical properties of functionalised fullerene derivatives, carbon-carbon bond formation via radical ions, photoinduced electron transfer processes in ketone, aldehyde, and ester synthesis, photochemical reactions between arenenitriles and benzylic donors, photo-oxidation of conjugated dienes, photoredox reactions of aromatic nitro compounds, electron transfer-mediated photochemistry of some unsaturated nitrogen-containing compounds, reactions of 02( Ag), carbon dioxide activation by aza-macrocyclic complexes, and photochromism of chalcone derivatives. ... [Pg.204]

Charge-Transfer Compounds. Similat to iodine and chlorine, bromine can form charge-transfer complexes with organic molecules that can serve as Lewis bases. The frequency of the iatense uv charge-transfer adsorption band is dependent on the ionization potential of the donor solvent molecule. Electronic charge can be transferred from a TT-electron system as ia the case of aromatic compounds or from lone-pairs of electrons as ia ethers and amines. [Pg.284]

The fluorination of organometallics with Al-fluoroamide reagents has received Only limited attention. Grignard reagents, both aliphatic and aromatic, are converted to organofluonne compounds. Both the electron transfer and the Sf,j2 ntechamsms have been considered in these processes [SO, 81, 82], The reactions 0 exemplified in equation 46 [48, 69, 70, 71, 75] Organosilanes are also fluonnated [71] (equation 47)... [Pg.157]

Arenediazonium ions can, of course, bring about electrophilic aromatic substitution giving aromatic azo-compounds. Using PhN=N and PhO , polarized signals have been observed in the N-spectrum (6 MHz) of the coupled product (A, A) and reactant, suggesting that the reaction proceeds, at least in part, by a mechanism involving preliminary reversible electron transfer between the reactants (Bubnov et al., 1972). [Pg.100]

Mercuration of aromatic compounds can be accomplished with mercuric salts, most often Hg(OAc)2 ° to give ArHgOAc. This is ordinary electrophilic aromatic substitution and takes place by the arenium ion mechanism (p. 675). ° Aromatic compounds can also be converted to arylthallium bis(trifluoroacetates), ArTl(OOCCF3)2, by treatment with thallium(III) trifluoroacetate in trifluoroace-tic acid. ° These arylthallium compounds can be converted to phenols, aryl iodides or fluorides (12-28), aryl cyanides (12-31), aryl nitro compounds, or aryl esters (12-30). The mechanism of thallation appears to be complex, with electrophilic and electron-transfer mechanisms both taking place. [Pg.793]

Most often, these radicals are unstable and can exist only while adsorbed on the electrode, although in the case of polycyclic aromatic compounds (e.g., the derivatives of anthracene), they are more stable and can exist even in the solution. The radicals formed first can undergo a variety of chemical or electrochemical reactions. This reaction type is the analog of hydrogen evolution, where electron transfer as the first step produces an adsorbed hydrogen atom, which is also a radical-type product. [Pg.281]

Dissolving-Metal Reduction of Aromatic Compounds and Alkynes. Dissolving-metal systems constitute the most general method for partial reduction of aromatic rings. The reaction is called the Birch reduction,214 and the usual reducing medium is lithium or sodium in liquid ammonia. An alcohol is usually added to serve as a proton source. The reaction occurs by two successive electron transfer/proto-nation steps. [Pg.436]

Aromatic diazo compounds can be reduced in water via a radical process (Scheme 11.5).108 The reduction mechanism of arenediazo-nium salts by hydroquinone was studied in detail.109 Arenediazonium tetrafluoroborate salts undergo facile electron-transfer reactions with hydroquinone in aqueous phosphate-buffered solution containing the hydrogen donor solvent acetonitrile. Reaction rates are first order in a... [Pg.362]

In complex organic molecules calculations of the geometry of excited states and hence predictions of chemiluminescent reactions are very difficult however, as is well known, in polycyclic aromatic hydrocarbons there are relatively small differences in the configurations of the ground state and the excited state. Moreover, the chemiluminescence produced by the reaction of aromatic hydrocarbon radical anions and radical cations is due to simple one-electron transfer reactions, especially in cases where both radical ions are derived from the same aromatic hydrocarbon, as in the reaction between 9.10-diphenyl anthracene radical cation and anion. More complex are radical ion chemiluminescence reactions involving radical ions of different parent compounds, such as the couple naphthalene radical anion/Wurster s blue (see Section VIII. B.). [Pg.69]

Whatever the best explanation may be, an indication that allylic alkali metal compounds or allylic carbanions do in fact form the less stable of the two possible acids on neutralization is found in the results of the reduction of aromatic compounds by dissolving metals.376The detection of a paramagnetic intermediate in a similar system and polaro-graphic evidence indicate a one electron transfer in the rate and potential determining step.878 376 The mechanism therefore involves ions (or organometallic intermediates) like the following ... [Pg.201]

For /8-substituted 7t-systems, silyl substitution causes the destabilization of the 7r-orbital (HOMO) [3,4]. The increase of the HOMO level is attributed to the interaction between the C-Si a orbital and the n orbital of olefins or aromatic systems (a-n interaction) as shown in Fig. 3 [7]. The C-Si a orbital is higher in energy than the C-C and C-H a orbitals and the energy match of the C-Si orbital with the neighboring n orbital is better than that of the C-C or C-H bond. Therefore, considerable interaction between the C-Si orbital and the n orbital is attained to cause the increase of the HOMO level. Since the electrochemical oxidation proceeds by the initial electron-transfer from the HOMO of the molecule, the increase in the HOMO level facilitates the electron transfer. Thus, the introduction of a silyl substituents at the -position results in the decrease of the oxidation potentials of the 7r-system. On the basis of this j -efleet, anodic oxidation reactions of allylsilanes, benzylsilanes, and related compounds have been developed (Sect. 3.3). [Pg.53]

We know that reduction potentials of arylsilanes are less negative than those of the corresponding aromatic compounds without silyl substituents (Sect. 2.2.1). The effect of silyl groups to facilitate the electron transfer to the neigbouring aromatic group is explained in terms of p interaction. For example, half wave reduction potentials of naphthylsilanes are less negative than that of... [Pg.80]

The nitrosonium cation can serve effectively either as an oxidant or as an electrophile towards different aromatic substrates. Thus the electron-rich polynuclear arenes suffer electron transfer with NO+BF to afford stable arene cation radicals (Bandlish and Shine, 1977 Musker et al., 1978). Other activated aromatic compounds such as phenols, anilines and indoles undergo nuclear substitution with nitrosonium species that are usually generated in situ from the treatment of nitrites with acid. It is less well known, but nonetheless experimentally established (Hunziker et al., 1971 Brownstein et al., 1984), that NO+ forms intensely coloured charge-transfer complexes with a wide variety of common arenes (30). For example, benzene, toluene,... [Pg.224]

Oxidative Polymerization Reactions. Clays can initiate polymerization of unsaturated compounds through free radical mechanisms. A free radical R", which may be formed by loss of a proton and electron transfer from the organic compound to the Lewis acid site of the clay or, alternatively, a free radical cation, R+, which may be formed by electron transfer of an electron from the organic compound to the Lewis acid site of the clay, can attack a double bond or an aromatic ring in the same manner as an electrophile. The intermediate formed is relatively stable because of resonance, but can react with another aromatic ring to form a larger, but chemically very similar, species. Repetition of the process can produce oligomers (dimers, trimers) and, eventually, polymers. [Pg.468]

Figure 2. Schematic representation of electron transfer from an aromatic compound to O2 with a Cu-exchanged clay as the catalyst and the formation of polymers (Reaction A) and hydrogen peroxide (Reaction B). Figure 2. Schematic representation of electron transfer from an aromatic compound to O2 with a Cu-exchanged clay as the catalyst and the formation of polymers (Reaction A) and hydrogen peroxide (Reaction B).

See other pages where Aromatic compounds electron transfer is mentioned: [Pg.248]    [Pg.216]    [Pg.15]    [Pg.2616]    [Pg.62]    [Pg.33]    [Pg.431]    [Pg.26]    [Pg.808]    [Pg.256]    [Pg.151]    [Pg.7]    [Pg.1010]    [Pg.213]    [Pg.660]    [Pg.39]    [Pg.76]    [Pg.278]    [Pg.310]    [Pg.304]    [Pg.150]    [Pg.166]    [Pg.177]    [Pg.275]    [Pg.5]    [Pg.78]    [Pg.231]    [Pg.517]    [Pg.100]    [Pg.214]    [Pg.240]    [Pg.457]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



Aromaticity electron transfer

Electron aromatic

Electron compounds

Electron-transfer Reactions of Aromatic Compounds

Electronic compounds

© 2024 chempedia.info