Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compounds ammonia

CoF is used for the replacement of hydrogen with fluorine in halocarbons (5) for fluorination of xylylalkanes, used in vapor-phase soldering fluxes (6) formation of dibutyl decalins (7) fluorination of alkynes (8) synthesis of unsaturated or partially fluorinated compounds (9—11) and conversion of aromatic compounds to perfluorocycHc compounds (see Fluorine compounds, organic). CoF rarely causes polymerization of hydrocarbons. CoF is also used for the conversion of metal oxides to higher valency metal fluorides, eg, in the assay of uranium ore (12). It is also used in the manufacture of nitrogen fluoride, NF, from ammonia (13). [Pg.178]

Iron(III) bromide [10031-26-2], FeBr, is obtained by reaction of iron or inon(II) bromide with bromine at 170—200°C. The material is purified by sublimation ia a bromine atmosphere. The stmcture of inoa(III) bromide is analogous to that of inon(III) chloride. FeBr is less stable thermally than FeCl, as would be expected from the observation that Br is a stronger reductant than CF. Dissociation to inon(II) bromide and bromine is complete at ca 200°C. The hygroscopic, dark red, rhombic crystals of inon(III) bromide are readily soluble ia water, alcohol, ether, and acetic acid and are slightly soluble ia Hquid ammonia. Several hydrated species and a large number of adducts are known. Solutions of inon(III) bromide decompose to inon(II) bromide and bromine on boiling. Iron(III) bromide is used as a catalyst for the bromination of aromatic compounds. [Pg.436]

The A-ring of the 17-ol (25) derived from equilenin 3-methyl ether is reduced rapidly under Birch reduction conditions, since the 1,4-positions are unsubstituted. The B-ring is reduced at a much slower rate, as is characteristic of aromatic compounds in which 1,4-reduction can occur only if a proton enters an alkylated position. Treatment of (25) with sodium and t-butyl alcohol in ammonia reduces only the A-ring to afford the corresponding 1,4-dihydro compound in over 85% yield.On the other hand,... [Pg.8]

The term Birch reduction was originally applied to the reduction of aromatic compounds by alkali metals and an alcohol in ammonia. In recent years many chemists have used the term to include all metal-ammonia reductions, whether an alcoholic proton source is present or not. The author prefers to use the term Birch reduction to designate any reduction carried out in ammonia with a metal and a proton donor as or more acidic than an alcohol, since Birch customarily used such a proton donor in his extensive pioneering work. The term metal-ammonia reduction is best reserved for reductions in which ammonia is the only proton donor present. This distinction in terminology emphasizes the importance of the acidity of the proton donor in the reduction process. [Pg.12]

Reduction of a conjugated enone to a saturated ketone requires the addition of two electrons and two protons. As in the case of the Birch reduction of aromatic compounds, the exact order of these additions has been the subject of study and speculation. Barton proposed that two electrons add initially giving a dicarbanion of the structure (49) which then is protonated rapidly at the / -position by ammonia, forming the enolate salt (50) of the saturated ketone. Stork later suggested that the radical-anion (51), a one electron... [Pg.27]

Heterocyclic enamines A -pyrroline and A -piperideine are the precursors of compounds containing the pyrrolidine or piperidine rings in the molecule. Such compounds and their N-methylated analogs are believed to originate from arginine and lysine (291) by metabolic conversion. Under cellular conditions the proper reaction with an active methylene compound proceeds via an aldehyde ammonia, which is in equilibrium with other possible tautomeric forms. It is necessary to admit the involvement of the corresponding a-ketoacid (12,292) instead of an enamine. The a-ketoacid constitutes an intermediate state in the degradation of an amino acid to an aldehyde. a-Ketoacids or suitably substituted aromatic compounds may function as components in active methylene reactions (Scheme 17). [Pg.295]

Arynes are intermediates in certain reactions of aromatic compounds, especially in some nucleophilic substitution reactions. They are generated by abstraction of atoms or atomic groups from adjacent positions in the nucleus and react as strong electrophiles and as dienophiles in fast addition reactions. An example of a reaction occurring via an aryne is the amination of o-chlorotoluene (1) with potassium amide in liquid ammonia. According to the mechanism given, the intermediate 3-methylbenzyne (2) is first formed and subsequent addition of ammonia to the triple bond yields o-amino-toluene (3) and m-aminotoluene (4). It was found that partial rearrangement of the ortho to the meta isomer actually occurs. [Pg.121]

The reduction of aromatic compounds 1 by alkali metals in liquid ammonia in the presence of an alcohol is called the Birch reduction, and yields selectively the 1,4-hydrogenated product " 2. [Pg.43]

This procedure is illustrative of the general method of reduction of aromatic compounds by alkali metals in liquid ammonia known as the Birch reduction. The theoretical and preparative aspects of the Birch reduction have been discussed in excellent reviews,4-4... [Pg.23]

Reduction, see also Hydrogenation electrolytic, see Electrolysis of anisoin to deoxyanisoin by tin and hydrochloric acid, 40, 16 of aromatic compounds to dihydroaromatics by sodium and ammonia, 43, 23... [Pg.121]

Under the chosen conditions aromatic compounds are nitrated to nitroaromatics [1]. The detection of rotenone [1] (see below) depends on the reduction of silver ions, incorporated into the layer, to metallic silver in the presence of ammonia [4]. The mechanism of the reaction of many substances leading to fluorescent derivatives has not yet been elucidated [2],... [Pg.172]

Dissolving-Metal Reduction of Aromatic Compounds and Alkynes. Dissolving-metal systems constitute the most general method for partial reduction of aromatic rings. The reaction is called the Birch reduction,214 and the usual reducing medium is lithium or sodium in liquid ammonia. An alcohol is usually added to serve as a proton source. The reaction occurs by two successive electron transfer/proto-nation steps. [Pg.436]

Phenylalanine ammonia-lyase (PAL EC 4.3.1.5) is a pivotal enzyme in controlling flow of carbon from aromatic amino acids to secondary aromatic compounds (Figure 1) (28). PAL primarily deaminates phenylalanine to form t-cinnamic acid, however, in many species, it also less efficiently deaminates tyrosine to form -coumaric acid. Because PAL is restricted to plants and is an important enzyme in plant development, Jangaard (29) suggested that PAL inhibitors might make safe and effective herbicides, however, in his screen of several herbicides, he found no compound to have a specific effect on PAL. This was also the case in studies by Hoagland and Duke (30, 31.) in which 16 herbicides were screened. [Pg.117]

About 100 gal of process wastewater is typically generated from 1 t of coke produced.15 These wastewaters from byproduct coke making contain high levels of oil and grease, ammonia nitrogen, sulfides, cyanides, thiocyanates, phenols, benzenes, toluene, xylene, other aromatic volatile components, and polynuclear aromatic compounds. They may also contain toxic metals such as antimony, arsenic, selenium, and zinc. Water-to-air transfer of pollutants may take place due to the escape of volatile pollutants from open equalization and storage tanks and other wastewater treatment systems in the plant. [Pg.43]

Reduction of aromatic compounds to dihydro derivatives by dissolved metals in liquid ammonia (Birch reduction) is one of the fundamental reactions in organic chemistry308. When benzene derivatives are subjected to this reduction, cyclohexa-1,4-dienes are formed. The 1,4-dienes obtained from the reduction isomerize to more useful 1,3-dienes under protic conditions. A number of syntheses of natural products have been devised where the Birch reduction of a benzenoid compound to a cyclohex-1,3-diene and converting this intermediate in Diels-Alder fasion to polycyclic products is involved (equation 186)308f h. [Pg.465]

Photosensitized animation of several aromatic compounds including phenanthrene, anthracene, naphthalene with ammonia or primary amines has also been investigated106 (equations 47-49). [Pg.706]

Dihydroaromatics find diverse applications. The main way to prepare them is through Birch reduction of aromatic compounds (Birch 1944, Wooster and Godfrey 1937, Hueckel and Bretschneider 1939). Aromatic compounds are hydrogenated in diethyl ether or liquid ammonia, with alkali metals as reductants and alcohols as proton sources. [Pg.354]

An aromatic compound A on treatment with aqueous ammonia and heating forms compound B which on heating with and KOH forms a compound C of molecular formula CgH N. Write the structures and lUPAC names of compounds A, B and C. [Pg.133]

This enzyme [EC 1.14.13.25] catalyzes the reaction of methane with NAD(P)H and dioxygen to produce methanol, NAD(P), and water. This enzyme is reported to exhibit a broad specificity. Many alkanes can be hydrox-ylated and alkenes are converted into the corresponding epoxides. Carbon monoxide is oxidized to carbon dioxide, ammonia is oxidized to hydroxylamine, and some aromatic compounds and cyclic alkanes can also be hy-droxylated, albeit not as efficiently. [Pg.458]

In view of the very high reactivity of the aminochromes in solution, paper chromatographic studies with these compounds present a number of difficulties. For instance, the ease with which the aminochromes may interact with the solvent system being used, or with impurities in the paper, must be taken into consideration. One of the solvent systems which has been extensively employed for the paper chromatographic separation of aromatic compounds (i.e. an isopropanol-ammonia-water mixture) is quite unsatisfactory in this case, since, in the experience of the author, total decomposition of the aminochromes in basic solvents invariably occurs very rapidly.64 This is not surprising in view of the known sensitivity of the amino-... [Pg.232]


See other pages where Aromatic compounds ammonia is mentioned: [Pg.206]    [Pg.7]    [Pg.20]    [Pg.45]    [Pg.1010]    [Pg.1567]    [Pg.113]    [Pg.33]    [Pg.1171]    [Pg.56]    [Pg.112]    [Pg.205]    [Pg.45]    [Pg.781]    [Pg.1237]    [Pg.168]    [Pg.506]   
See also in sourсe #XX -- [ Pg.294 ]




SEARCH



Ammonia compounds

© 2024 chempedia.info