Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic amines Nitrous acid

The most important reaction of the diazonium salts is the condensation with phenols or aromatic amines to form the intensely coloured azo compounds. The phenol or amine is called the secondary component, and the process of coupling with a diazonium salt is the basis of manufacture of all the azo dyestuffs. The entering azo group goes into the p-position of the benzene ring if this is free, otherwise it takes up the o-position, e.g. diazotized aniline coupled with phenol gives benzeneazophenol. When only half a molecular proportion of nitrous acid is used in the diazotization of an aromatic amine a diazo-amino compound is formed. [Pg.133]

Aromatic primary amines differ markedly from aliphatic amines in their reaction with nitrous acid. Thus a cold aqueous solution of mono thylamine hydrochloride reacts with nitrous acid to give mainly the corresponding primary alcohol ... [Pg.182]

Secondary amines of both the aliphatic and the aromatic series react similarly with nitrous acid, giving nilrosamines ... [Pg.203]

Nitrous acid does not react with aliphatic tertiary amines, such as triethyl-amine, (CaHj)aN, nor does it usually react with aromatic tertiary amines such as triphenylamine, (CaHj)aN, which contain three aryl groups. [Pg.204]

Diazonium salts couple readily with aromatic primary amines, giving diazoamino compounds. If for instance an aqueous solution of aniline sulphate is diazotised with a deficiency of nitrous acid, only part of it is converted into benzenediazonium sulphate and the latter then couples with the unchanged aniline to give diazoaminobenzene. The reaction is carried out at the opti-CeHsNHj.HjSO + HONO = CbHsNjHSO, + zHaO... [Pg.207]

Tertiary aliphatic - aromatic amines, unlike those of the aliphatic series, react with nitrous acid with the formation of G-nitroso compounds the nitroso group enters almost exclusively in the para position if available, otherwise in the ortho position. Thus dimethylaniline yields />-nitrosodiniethylaniline ... [Pg.562]

Primary aromatic amines differ from primary aliphatic amines in their reaction with nitrous acid. Whereas the latter yield the corresponding alcohols (RNHj — ROH) without formation of intermediate products see Section 111,123, test (i), primary aromatic amines 3neld diazonium salts. Thus aniline gives phcnyldiazonium chloride (sometimes termed benzene-diazonium chloride) CjHbNj- +C1 the exact mode of formation is not known, but a possible route is through the phenjdnitrosoammonium ion tlius ... [Pg.590]

Some reference to the use of nitrous acid merits mention here. Primary aromatic amines yield diazonium compounds, which may be coupled with phenols to yield highly-coloured azo dyes (see Section IV,100,(iii)). Secondary aromatic amines afford nitroso compounds, which give Liebermann a nitroso reaction Section IV,100,(v). Tertiary aromatic amines, of the type of dimethylaniline, yield p-nitroso derivatives see Section IV,100,(vii). ... [Pg.1073]

R—N=N Aryl diazonium 10ns are formed by treatment of primary aromatic amines with nitrous acid They are ex tremely useful in the preparation of aryl halides phenols and aryl cyanides... [Pg.1281]

Nitrosation (Section 22 15) The reaction of a substance usu ally an amine with nitrous acid Pnmary amines yield dia zonium 10ns secondary amines yield N nitroso amines Tertiary aromatic amines undergo nitrosation of their aro matic ring... [Pg.1289]

Reaction with Nitrous Acid. Primary, secondary, and tertiary aromatic amines react with nitrous acid to form a variety of products. Primary aromatic amines form diazonium salts. ... [Pg.230]

Dyes. Sodium nitrite is a convenient source of nitrous acid in the nitrosation and diatozation of aromatic amines. When primary aromatic amines react with nitrous acid, the intermediate diamine salts are produced which, on coupling to amines, phenols, naphthols, and other compounds, form the important azo dyes (qv). The color center of the dye or pigment is the -N=N- group and attached groups modify the color. Many dyes and pigments (qv) have been manufactured with shades of the entire color spectmm. [Pg.200]

Synthesis. Almost without exception, azo dyes ate made by diazotization of a primary aromatic amine followed by coupling of the resultant diazonium salt with an electron-rich nucleophile. The diazotization reaction is carried out by treating the primary aromatic amine with nitrous acid, normally generated in situ with hydrochloric acid and sodium nitrite. The nitrous acid nitrosates the amine to generate the N-nitroso compound, which tautomerizes to the diazo hydroxide. [Pg.273]

Note Note that the diazotization of primary aromatic amines can also be achieved by placing the chromatogram for 3 — 5 min in a twin-trough chamber containing nitrous fumes (fume cupboard ). The fumes are produced in the empty trough of the chamber by addition of 25% hydrochloric acid to a 20% sodium nitrite solution [2, 4], iV-(l-Naphthyl)ethylenediamine can be replaced in the reagent by a- or -naphthol [10, 14], but this reduces the sensitivity of detection [2]. Spray solutions Ila and lib can also be used as dipping solutions. [Pg.225]

Nitrosodimethylaniline.—It is a peculiarity of the tertiary aromatic amines, which distinguish them fiom the corresponding aliphatic compounds, that they arc capable of reacting with nitrous acid. Here the nitroso-group replaces hydrogen in the para-position to the dimethylamino-group. [Pg.280]

The nitrosation of primary aromatic amines 1 with nitrous acid 2 and a subsequent dehydration step lead to the formation of diazonium ions 3. The unstable nitrous acid can for example be prepared by reaction of sodium nitrite with aqueous hydrochloric acid. [Pg.87]

The fact that practically all aromatic amines are readily converted into diazo compounds contributed greatly to Griess s success. The original method (Griess, 1858) by which he diazotized picramic acid (1.1 see Scheme 1-1) consisted of passing nitrous gases, prepared by the reduction of nitric acid with starch or arsenious acid, into an alcoholic solution of the amine. [Pg.2]

In contrast to the acid, sodium nitrite should not in general be added in excess. Firstly, as far as the ratio of amine to nitrite is concerned, diazotization is practically a quantitative reaction. In consequence, it provides the most important method for determining aromatic amines by titration. Secondly, an excess of nitrous acid exerts a very unfavorable influence on the stability of diazo solutions, as was shown by Gies and Pfeil (1952). Mechanistically the reactions between aromatic diazonium and nitrite ions were investigated more recently by Opgenorth and Rtichardt (1974). They showed that the primary and major reaction is the formation of aryl radicals from the intermediate arenediazonitrite (Ar —N2 —NO2). Details will be discussed in the context of homolytic dediazoniations (Secs. 8.6 and 10.6). [Pg.13]

The diazotization of heteroaromatic amines is basically analogous to that of aromatic amines. Among the five-membered systems the amino-azoles (pyrroles, diazoles, triazoles, tetrazoles, oxazoles, isooxazoles, thia-, selena-, and dithiazoles) have all been diazotized. In general, diazotization in dilute mineral acid is possible, but diazotization in concentrated sulfuric acid (nitrosylsulfuric acid, see Sec. 2.2) or in organic solvents using an ester of nitrous acid (ethyl or isopentyl nitrite) is often preferable. Amino derivatives of aromatic heterocycles without ring nitrogen (furan and thiophene) can also be diazotized. [Pg.16]

On the other hand, there is at least one case of an aromatic amine without a hydroxy group in the 2-position, namely 1-aminophenazine (2.29) which, after the initial diazotization, is oxidized within minutes by air or additional nitrous acid to the quinone diazide 2.31 (Olson, 1977). [Pg.27]

The rate-determining step in the diazotization of aniline in aqueous perchloric acid below concentrations of 0.05 m (pH >0.7) is the formation of N203. The following A-nitrosation step is faster (rate equation of Scheme 3-12). However, with aromatic amines that are weaker nucleophiles than aniline, e.g. 4-nitroaniline, nitrosation is slower than the formation of N203, and the rate is second-order with respect to nitrous acid and first-order in amine (Scheme 3-13, Larkworthy, 1959). [Pg.45]

On increasing the acidity still further (>0.1 m H2S04, i.e., H0< 1), the rate of diazotization of aniline passes through a minimum and then increases rapidly (region B in Fig. 3-1). The plot in Figure 3-1 is a somewhat schematic representation of the minimum, the position of which depends very much on the concentration of nitrous acid. Moreover, with other aromatic amines the plot is not exactly the same, but it can be explained by analogous arguments. [Pg.46]

In the context of the stability of the nitrosoamine intermediate in the diazotization of heteroaromatic amines relative to that in the case of aromatic amines, the reversibility of diazotization has to be considered. To the best of our knowledge the reverse reaction of a diazotization of an aromatic amine has never been observed in acidic solutions. This fact is the basis of the well-known method for the quantitative analysis of aromatic amines by titration with a calibrated solution of sodium nitrite (see Sec. 3.3). With heteroaromatic amines, however, it has been reported several times that, when using amine and sodium nitrite in the stoichiometric ratio 1 1, after completion of the reaction nitrous acid can still be detected with Kl-starch paper,... [Pg.62]

Ring nitrosation with nitrous acid is normally carried out only with active substrates such as amines and phenols. However, primary aromatic amines give diazonium ions (12-47) when treated with nitrous acid, " and secondary amines tend to give N-nitroso rather than C-nitroso compounds (12-49) hence this reaction is normally limited to phenols and tertiary aromatic amines. Nevertheless secondary aromatic amines can be C-nitrosated in two ways. The N-nitroso compound first obtained can be isomerized to a C-nitroso compound (11-32), or it can be treated with another mole of nitrous acid to give an N,C-dinitroso compound. Also, a successful nitrosation of anisole has been reported, where the solvent was CF3COOH—CH2CI2. " ... [Pg.699]

When primary aromatic amines are treated with nitrous acid, diazonium salts are formed. The reaction also occurs with aliphatic primary amines, but aliphatic diazonium ions are extremely unstable, even in solution (see p. 448). Aromatic diazonium ions are more stable, because of the resonance interaction between the nitrogens and the ring ... [Pg.816]

For aromatic amines, the reaction is very general. Halogen, nitro, alkyl, aldehyde, sulfonic acid, and so on, groups do not interfere. Since aliphatic amines do not react with nitrous acid below a pH of 3, it is even possible, by working at a pH of 1, to diazotize an aromatic amine without disturbing an aliphatic amino group in the same molecule. ... [Pg.816]


See other pages where Aromatic amines Nitrous acid is mentioned: [Pg.470]    [Pg.28]    [Pg.243]    [Pg.660]    [Pg.24]    [Pg.199]    [Pg.255]    [Pg.282]    [Pg.14]    [Pg.699]    [Pg.701]    [Pg.875]    [Pg.205]    [Pg.446]    [Pg.660]   
See also in sourсe #XX -- [ Pg.541 ]




SEARCH



Acids Nitrous acid

Aromatic amination

Aromatic amines

Aromatic amines reaction with nitrous acid

Aromatics amination

Nitrous acid

© 2024 chempedia.info