Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aprotic equilibrium

This is an acid base equilibrium xmder the Franklin definition. The [Al2Cl7] species is the acid and the Cl is the base. Note that this is an aprotic equilibrium. Therefore if the mole ratio of [C2-mim]Cl AICI3 is greater than, less than, or exactly equal to 50 50, the solvent behavior can be described as Frankhn basic, Franklin acidic, or neutral. [Pg.1467]

When R = H, in all the known examples, the 3-substituted tautomer (129a) predominates, with the possible exception of 3(5)-methylpyrazole (R = Me, R = H) in which the 5-methyl tautomer slightly predominates in HMPT solution at -17 °C (54%) (77JOC659) (Section 4.04.1.3.4). For the general case when R = or a dependence of the form logjRTT = <2 Za.s cTi + b Xa.s (Tr, with a>0,b <0 and a> b, has been proposed for solutions in dipolar aprotic solvents (790MR( 12)587). The equation predicts that the 5-trimethylsilyl tautomer is more stable than the 3-trimethylsilylpyrazole, since experimental work has to be done to understand the influence of the substituents on the equilibrium constant which is solvent dependent (78T2259). There is no problem with indazole since the IH tautomer is always the more stable (83H(20)1713). [Pg.211]

In the discussion of the relative acidity of carboxylic acids in Chapter 1, the thermodynamic acidity, expressed as the acid dissociation constant, was taken as the measure of acidity. It is straightforward to determine dissociation constants of such adds in aqueous solution by measurement of the titration curve with a pH-sensitive electrode (pH meter). Determination of the acidity of carbon acids is more difficult. Because most are very weak acids, very strong bases are required to cause deprotonation. Water and alcohols are far more acidic than most hydrocarbons and are unsuitable solvents for generation of hydrocarbon anions. Any strong base will deprotonate the solvent rather than the hydrocarbon. For synthetic purposes, aprotic solvents such as ether, tetrahydrofuran (THF), and dimethoxyethane (DME) are used, but for equilibrium measurements solvents that promote dissociation of ion pairs and ion clusters are preferred. Weakly acidic solvents such as DMSO and cyclohexylamine are used in the preparation of strongly basic carbanions. The high polarity and cation-solvating ability of DMSO facilitate dissociation... [Pg.405]

Sn2 reactions with anionic nucleophiles fall into this class, and observations are generally in accord with the qualitative prediction. Unusual effects may be seen in solvents of low dielectric constant where ion pairing is extensive, and we have already commented on the enhanced nucleophilic reactivity of anionic nucleophiles in dipolar aprotic solvents owing to their relative desolvation in these solvents. Another important class of ion-molecule reaction is the hydroxide-catalyzed hydrolysis of neutral esters and amides. Because these reactions are carried out in hydroxy lie solvents, the general medium effect is confounded with the acid-base equilibria of the mixed solvent lyate species. (This same problem occurs with Sn2 reactions in hydroxylic solvents.) This equilibrium is established in alcohol-water mixtures ... [Pg.409]

Indole itself forms a dimer or a trimer, depending on experimental conditions the dimer hydrochloride is formed in aprotic solvents with dry HCl, whereas aqueous media lead to dimer or trimer, or both. It was Schmitz-DuMont and his collaborators who beautifully cleared up the experimental confusion and discovered the simple fact that in aqueous acid the composition of the product is dictated by the relative solubilities of the dimer and trimer hydrochlorides/ -This, of course, established the very important point that there is an equilibrium in solution among indole, the dimer, the trimer, and their salts. It was furthermore demonstrated that the polymerization mechanism involves acid catalysis and that in dilute solution the rate of reaction is dependent on the concentration of acid. [Pg.300]

It should be born in mind, however, that the activation parameters calculated refer to the sum of several reactions, whose enthalpy and/or entropy changes may have different signs from those of the decrystalUzation proper. Specifically, the contribution to the activation parameters of the interactions that occur in the solvent system should be taken into account. Consider the energetics of association of the solvated ions with the AGU. We may employ the extra-thermodynamic quantities of transfer of single ions from aprotic to protic solvents as a model for the reaction under consideration. This use is appropriate because recent measurements (using solvatochromic indicators) have indicated that the polarity at the surface of cellulose is akin to that of aliphatic alcohols [99]. Single-ion enthalpies of transfer indicate that Li+ is more efficiently solvated by DMAc than by alcohols, hence by cellulose. That is, the equilibrium shown in Eq. 7 is endothermic ... [Pg.123]

B) From the foregoing, it is clear that the Arrhenius or solvents theory cannot work for aprotic solvents most adequate here is the Bransted-Lowry or proton theory, in which an acid is defined as a proton donor and a base as a proton acceptor, and under conditions such that the acid by donating its proton is converted into its conjugate base, and the base by accepting a proton is converted into its conjugate acid. This mutual relationship is illustrated by the following equilibrium reaction ... [Pg.254]

Reaction (1) is a reversible process, and it can be a source of superoxide if only its equilibrium is shifted to the right. The estimation of the equilibrium constant for this reaction in aqueous solution is impossible because the reduction potential of water-insoluble ubiquinone in water is of course undetectable. However, Reaction (1) occurs in the mitochondrial membrane and therefore, the data for the aqueous solutions are irrelevant for the measurement of its equilibrium. Some time back we studied Reaction (1) in aprotic media and found out that Ki is about 0.4 [23]. As the ubiquinone concentration in mitochondria is very high (it is about... [Pg.750]

Apart from the qualitative observations made previously about suitable solvents for study, the subject of solvates has two important bearings on the topics of thermochemistry which form the main body of this review. The first is that measured solubilities relate to the appropriate hydrate in equilibrium with the saturated solution, rather than to the anhydrous halide. Obviously, therefore, any estimate of enthalpy of solution from temperature dependence of solubility will refer to the appropriate solvate. The second area of relevance is to halide-solvent bonding strengths. These may be gauged to some extent from differential thermal analysis (DTA), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) solvates of "aprotic solvents such as pyridine, tetrahydrofuran, and acetonitrile will give clearer pictures here than solvates of "protic solvents such as water or alcohols. [Pg.77]

The reactions in a non-basic aprotic solvent CH2C12 provided solely 10, the product of carbon protonation, while those carried out in an acidic protic solvent HFIP give exclusively 8K, the product of oxygen protonation. The equilibrium protonation may be favored in a protic solvent having abundant protons available. In other basic solvents, the proton donor involved in the reaction should be the conjugate acid of the solvent, and many factors may delicately control the selectivity of the reaction. [Pg.108]

A new assumption to be discussed in this section is that the fourth-order kinetics in SatAr by amines in aprotic solvents is due to the formation of the substrate-catalyst molecular complex. Since 1982, Forlani and coworkers149 have advocated a model in which the third order in amine is an effect of the substrate-nucleophile interaction on a rapidly established equilibrium preceding the substitution process, as is shown in Scheme 15 for the reaction of 4-fluoro-2,4-dinitrobenzene (FDNB) with aniline (An), where K measures the equilibrium constant for ... [Pg.1278]

Considering nitration with the help of NO2/N2O4 in an aprotic medium, one should avoid a simplified approach to its mechanism. The dissociation equilibrium N2O4 = 2NO2 is characterized at 298.15 K (25°C) with constants, on molality basis, 3.5 X 10 in hexane, 5.9 X 10 in carbon tetrachloride, and 5.3 X 10 in chloroform (Mendiara and Perissinotti 2003). In aprotic mediums, two ionic routes of dissociation of N2O4 are possible... [Pg.258]

This interconversion can also be performed in solvents, and the rate of the isomerization is dependent on the solvent used. In the dipolar aprotic solvent DMSO the rate of the reaction is fast, but in methanol, acetone, or dioxane the rate is low. However, the value of the equilibrium constant is scarcely influenced by the solvent ( 134/133 = 6-10) (75JHC985).This is not too surprising, since the equilibrium position is controlled by the relative thermodynamic stability of the isomers, which is a function of their heats of formation and of solvation. Undoubtedly, the heat of formation is the more important factor to the thermodynamic stability (75JHC985). [Pg.201]

In contrast with the oxocarboxylic acids, which readily participate in tautomeric equilibria in solution, their open-chain and cyclic N-unsubsti-tuted and A-monosubstituted amide isomers are more stable. In most cases, the tautomeric equilibrium (Scheme 3) is not observed in neutral aprotic solvents at ambient temperature. In protic solvents, e.g., CD3OD, intercon-... [Pg.263]

The equilibrium between radical-anion and dimer for pyridine and quinoline has been examined in a number of aprotic solvents. Radical-anions of pyridine dimer-ise rapidly in liquid ammonia in tire presence of alkali metal ions [15] In hex-amethylphosphoramide with alkali metal counter ions, the monomer is detectable in an equlibrium concentration [16], The monomeric species can be stabilised by substituents and 2- or 4-cyanopyridines give radical-anions which persist in liquid ammonia while 3-cyanopyridine radical-anion dimerises with a rate constant of 2 x 10 [17], Quinoline radical-anion is stable in hexamelhylphosphoramide [16] but in liquid ammonia it dimerises irreversibly [18]. [Pg.241]


See other pages where Aprotic equilibrium is mentioned: [Pg.379]    [Pg.389]    [Pg.214]    [Pg.215]    [Pg.159]    [Pg.396]    [Pg.357]    [Pg.57]    [Pg.76]    [Pg.59]    [Pg.302]    [Pg.125]    [Pg.262]    [Pg.421]    [Pg.500]    [Pg.216]    [Pg.200]    [Pg.325]    [Pg.529]    [Pg.878]    [Pg.349]    [Pg.391]    [Pg.66]    [Pg.1218]    [Pg.1251]    [Pg.1267]    [Pg.1269]    [Pg.242]    [Pg.93]    [Pg.292]    [Pg.122]    [Pg.297]    [Pg.94]    [Pg.37]    [Pg.205]   
See also in sourсe #XX -- [ Pg.689 ]




SEARCH



Aprotic

© 2024 chempedia.info