Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Applications nematics

Liquid crystalline thermoset epoxy prepolymer Not applicable Nematic to isotropic 176... [Pg.3042]

Thermo-optic effects in liquid crystals were investigated extensively from the point of view of device applications. Nematics are particularly suitable for such purposes because in this phase the refractive indices have an unusually large temperature dependence, especially near the nematic-isotropic phase transition. This strong temperature dependence is connected to the corresponding variation of the order parameter, 5. The order parameter is a measure of the degree to which the molecules are oriented along the director. The birefringence, is... [Pg.21]

For some applications, nematic mixtures have to be doped with chiral compounds, such dopants must not deteriorate the chemical stability and thermodynamic parameters of the mixtures. To this end, compounds with a high twisting power and good solubility are used. In special cases a dopant can be chosen which can compensate for the temperature drift of some important physical parameters of the nematic matrix. Compounds (l.xxxia) and (l.xxxib) are examples of the left- and right-handed chiral dopants, respectively. [Pg.37]

In simple single-site liquid crystal models, such as hard-ellipsoids or the Gay-Berne potential, a number of elegant techniques have been devised to calculate key bulk properties which are useful for display applications. These include elastic constants for nematic systems [87, 88]. However, these techniques are dependent on large systems and long runs, and (at the present time) limitations in computer time prevent the extension of these methods to fully atomistic models. [Pg.59]

Many technological applications of liquid crystals, as in electro-optic display devices, are based on multicomponent mixtures. Such systems offer a route to the desired material properties which cannot be achieved simultaneously for single component systems. Mixtures also tend to exhibit a richer phase behaviour than pure systems with features such as re-entrant nematic phases [3] and nematic-nematic transitions possible. In this section, we describe simulations which have been used to study mixtures of thermotropic calamitic mesogens. [Pg.121]

In the case of the higher temperature crystallization, as will be shown in Sect. 4, the theory of Doi et al. is applicable without doubt since the primary phase separation involves the transition from the isotropic to nematic phase, but in the case of the glass crystallization near Tg described above its applicability is unclear since the observed data may correspond to the secondary phase separation. However, if the secondary phase separation occurs, the primary phase separation must have proceeded prior to that. In a rapidly quenched glass even if the primary phase separation had already taken place, it would be still incomplete, so that it will re-start by heating. [Pg.203]

Drapp B., Pauluth D., Krause J., Gauglitz G., The application of the phase transition in nematic liquid crystals for the optical detection of volatile organic compounds, Fresenius J Anal Chem, 1999, 364, 121-127. [Pg.236]

Thermotropic cholesterics have several practical applications, some of which are very widespread. Most of the liquid crystal displays produced use either the twisted nematic (see Figure 7.3) or the supertwisted nematic electrooptical effects.6 The liquid crystal materials used in these cells contain a chiral component (effectively a cholesteric phase) which determines the twisting direction. Cholesteric LCs can also be used for storage displays utilizing the dynamic scattering mode.7 Short-pitch cholesterics with temperature-dependent selective reflection in the visible region show different colors at different temperatures and are used for popular digital thermometers.8... [Pg.428]

Lyotropic polymeric LC, formed by dissolving two aromatic polyamides in concentrated sulphuric acid, have been studied using variable-director 13C NMR experiments.324 The experimental line shapes at different angles w.r.t the external field were used to extract macromolecular order and dynamic in these ordered fluids. An interesting application of lyotropic LC is for the chiral discrimination of R- and S-enantiomers, and has recently been demonstrated by Courtieu and co-workers.325 The idea was to include a chiral compound 1-deutero-l-phenylethanol in a chiral cage (e.g., /1-cyclodextrin) which was dissolved and oriented by the nematic mean field in a cromolyn-water system. Proton-decoupled 2H NMR spectrum clearly showed the quad-rupolar splittings of the R- and S-enantiomers. The technique is applicable to water-soluble solutes. [Pg.138]

Regions in a liquid crystal having a specific cellular periodic flow-pattern in the form of long rolls induced by the application of an electric field perpendicular to a nematic layer with an initial planar alignment of the director. [Pg.132]

It may be asserted that the fundamental reason arises from the fact that, while parallel arrangements of anisotropic objects lead to a decrease in orientational entropy, there is an increase in positional entropy. Thus, in some cases, greater positional order will be entropically favorable. This theory therefore predicts that a solution of rod-shaped objects will undergo a phase transition at sufficient concentration into a nematic phase. Recently, this theory has been used to observe the phase transition between nematic and smectic-A at very high concentration (Hanif et al.). Although this model is conceptually helpful, its mathematical formulation makes several assumptions that limit its applicability to real systems. [Pg.192]

By far the most important commercial applications of nematic liquid crystals are in the a multi-billion dollar display industry. Cholesteric, or chiral nematic liquid crystals have been used in coloured guest-host displays and in thermography/ther-mochromic applications. [Pg.306]

The classical cholesteric phase materials show only a weak anisotropic interaction with electric fields and hence are of limited use in electro-optical response applications. Cholesteric phases for these outlets are consequently produced by adding chiral dopants to nematic liquid crystals. [Pg.314]

We briefly discussed the origin and structure of liquid crystals in Section 4.13. The last decade has witnessed a surge of interest in liquid crystals because of their applications in display devices (devices that convert an electrical signal into visual information). The design of liquid crystal (LC) devices relies on the relation between the molecular structure and the phase behaviour (relative smectic-nematic tendency, NI etc.) as well as the physical properties of the liquid crystals (Chandrasekhar, 1994). [Pg.393]

It can be safely predicted that applications of liquid crystals will expand in the future to more and more sophisticated areas of electronics. Potential applications of ferroelectric liquid crystals (e.g. fast shutters, complex multiplexed displays) are particularly exciting. The only LC that can show ferroelectric property is the chiral smectic C. Viable ferroelectric displays have however not yet materialized. Antifer-roelectric phases may also have good potential in display applications. Supertwisted nematic displays of twist artgles of around 240° and materials with low viscosity which respond relatively fast, have found considerable application. Another development is the polymer dispersed liquid crystal display in which small nematic droplets ( 2 gm in diameter) are formed in a polymer matrix. Liquid crystalline elastomers with novel physical properties would have many applications. [Pg.465]

Several other applications of supramolecular systems have been proposed. Amongst those that are thought to be capable of bringing enormous benefits are devices making use of nonlinear optical phenomena [3,127]. Another exciting possibility of application of supramolecular systems includes the use of nematic... [Pg.157]

The first application described was as temperature sensors by using a chiral nematic liquid crystal, which displays different colors at different temperatures. It is also worth noting that many common fluids are in fact liquid crystals. Soap, for instance, is a liquid crystal, and forms a variety of liquid crystal phases depending on its concentration in water. [Pg.407]

Afterwards there appeared what has become the main application liquid crystal displays (LCDs) based on the twisted nematic (TN) mode. These are commonly used for flat panel displays (e.g., desk calculators). Thin film transistor (TFT) LCDs enabled a large number of segments (e.g., 640 x 1024) to be used and they had advantages like... [Pg.407]


See other pages where Applications nematics is mentioned: [Pg.445]    [Pg.445]    [Pg.240]    [Pg.2561]    [Pg.2562]    [Pg.2564]    [Pg.2565]    [Pg.204]    [Pg.599]    [Pg.26]    [Pg.14]    [Pg.51]    [Pg.179]    [Pg.175]    [Pg.346]    [Pg.124]    [Pg.199]    [Pg.472]    [Pg.526]    [Pg.1]    [Pg.68]    [Pg.69]    [Pg.99]    [Pg.25]    [Pg.103]    [Pg.376]    [Pg.306]    [Pg.118]    [Pg.91]    [Pg.96]    [Pg.360]   
See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Applications chiral nematics

Applications nematic liquid crystal displays

Applications of Chiral Nematics

Applications of Nematic Liquid Crystals

Applications supertwisted nematic

J. Booth 2 Chiral Nematics Physical Properties and Applications

Nematic liquid crystals device applications

Optical Properties of Nematics for Applications

Optical applications, chiral nematics

© 2024 chempedia.info