Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anthracenes, Diels-Alder with

Other methods for the synthesis of cyanoacrylate monomers include pyrolysis of 3-alkoxy-2-cyanopropionates (1), transesterification of cyanoacrylates with alcohols (19,20), displacement of monomer from the corresponding anthracene Diels-Alder adduct by treatment with maleic anhydride (7,21), esterification of cyanoacrylic acid or cyanoacryloyl chloride with alcohols (22), and the oxidation of alkyl 2-cyanopropionate phenyl selenides with hydrogen peroxide (23). These alternative methods are particularly useful for the preparation of monomers not readily prepared by thermal decomposition of cyanoacrylate polymer. [Pg.6006]

Diels-Alder activation volume, 138, 139, 145 Diels-Alder adduct uses, 145, 146 Diels-Alder with anthracene, 98 Diels-Alder with cyclopentadiene, 87 Diels-Alder with cyclopropane compounds, 132 Diels-Alder entropy of activation, 138 Diels-Alder molecular orbital picture, 140-143 Diels-Alder with nonconjugated dienes, 132 Diels-Alder with poly(furfuryl methacrylate), 472 Diels-Alder reaction dienophile, 103, 120, 138, 140, 142... [Pg.845]

Breslow studied the dimerisation of cyclopentadiene and the reaction between substituted maleimides and 9-(hydroxymethyl)anthracene in alcohol-water mixtures. He successfully correlated the rate constant with the solubility of the starting materials for each Diels-Alder reaction. From these relations he estimated the change in solvent accessible surface between initial state and activated complex " . Again, Breslow completely neglects hydrogen bonding interactions, but since he only studied alcohol-water mixtures, the enforced hydrophobic interactions will dominate the behaviour. Recently, also Diels-Alder reactions in dilute salt solutions in aqueous ethanol have been studied and minor rate increases have been observed Lubineau has demonstrated that addition of sugars can induce an extra acceleration of the aqueous Diels-Alder reaction . Also the effect of surfactants on Diels-Alder reactions has been studied. This topic will be extensively reviewed in Chapter 4. [Pg.26]

Butenediol is a weak dienophile in Diels-Alder reactions. Adducts have been described with anthracene (108) and with hexachlorocyclopentadiene... [Pg.107]

Bis(trifluoromethyl)-l,l-dicyanoethylene is a very reactive dienophile. It undergoes facile and high-yield [2+4] cycloadditions with 1,3-dienes, cyclopen-tadiene, and anthracene [707] (equation 86). It is reactive enough in a Diels-Alder reaction with styrene [702] (equation 86). [Pg.827]

The synthesis of bisantrene begins with Diels-Alder reaction of anthracene (52) and ethylene... [Pg.63]

For a recent discussion on the stereochemical aspects of the Diels-Alder reaction with vinyl sulphoxides see References 662, 663. It should be pointed out that vinyl sulphoxides can be considered in [2 + 4]-cycloadditions as acetylene synthons since the sulphinyl moiety may be removed from the product by sulphenic acid elimination. Paquette and coworkers took advantage of this fact in the synthesis of properly substituted anthracenes 562664, (equation 360). [Pg.358]

The discovery that Lewis acids can promote Diels-Alder reactions has become a powerful tool in synthetic organic chemistry. Yates and Eaton [4] first reported the remarkable acceleration of the reactions of anthracene with maleic anhydride, 1,4-benzoquinone and dimethyl fumarate catalyzed by aluminum chloride. The presence of the Lewis-acid catalyst allows the cycloadditions to be carried out under mild conditions, reactions with low reactive dienes and dienophiles are made possible, and the stereoselectivity, regioselectivity and site selectivity of the cycloaddition reaction can be modified [5]. Consequently, increasing attention has been given to these catalysts in order to develop new regio- and stereoselective synthetic routes based on the Diels-Alder reaction. [Pg.99]

Luche and coworkers [34] investigated the mechanistic aspects of Diels-Alder reactions of anthracene with either 1,4-benzoquinone or maleic anhydride. The cycloaddition of anthracene with maleic anhydride in DCM is slow under US irradiation in the presence or absence of 5% tris (p-bromophenyl) aminium hexachloroantimonate (the classical Bauld monoelectronic oxidant, TBPA), whereas the Diels Alder reaction of 1,4-benzoquinone with anthracene in DCM under US irradiation at 80 °C is slow in the absence of 5 % TBPA but proceeds very quickly and with high yield at 25 °C in the presence of TBPA. This last cycloaddition is also strongly accelerated when carried out under stirring solely at 0°C with 1% FeCh. The US-promoted Diels Alder reaction in the presence of TBPA has been justified by hypothesizing a mechanism via radical-cation of diene, which is operative if the electronic affinity of dienophile is not too weak. [Pg.157]

The single-electron transfer from one excited component to the other component acceptor, as the critical step prior to cycloaddition of photo-induced Diels Alder reactions, has been demonstrated [43] for the reaction of anthracene with maleic anhydride and various maleimides carried out in chloroform under irradiation by a medium-pressure mercury lamp (500 W). The (singlet) excited anthracene ( AN ), generated by the actinic light, is quenched by dienophile... [Pg.163]

The low solubility of fullerene (Ceo) in common organic solvents such as THE, MeCN and DCM interferes with its functionalization, which is a key step for its synthetic applications. Solid state photochemistry is a powerful strategy for overcoming this difficulty. Thus a 1 1 mixture of Cgo and 9-methylanthra-cene (Equation 4.10, R = Me) exposed to a high-pressure mercury lamp gives the adduct 72 (R = Me) with 68% conversion [51]. No 9-methylanthracene dimers were detected. Anthracene does not react with Ceo under these conditions this has been correlated to its ionization potential which is lower than that of the 9-methyl derivative. This suggests that the Diels-Alder reaction proceeds via photo-induced electron transfer from 9-methylanthracene to the triplet excited state of Ceo-... [Pg.168]

Rideout and Breslow first reported [2a] the kinetic data for the accelerating effect of water, for the Diels Alder reactions of cyclopentadiene with methyl vinyl ketone and acrylonitrile and the cycloaddition of anthracene-9-carbinol with N-ethylmaleimide, giving impetus to research in this area (Table 6.1). The reaction in water is 28 to 740 times faster than in the apolar hydrocarbon isooctane. By adding lithium chloride (salting-out agent) the reaction rate increases 2.5 times further, while the presence of guanidinium chloride decreases it. The authors suggested that this exceptional effect of water is the result of a combination of two factors the polarity of the medium and the... [Pg.252]

An example of a /zctcro-Diels-Alder reaction in SC-CO2 is the cycloaddition of anthracene with 4-phenyl-1,2,4-triazoline-3,5-dione, carried out at 40 °C and at a pressures between 75 and 216 bar [86]. The rate constant increases with decreasing pressure and the highest reactivity was observed at the critical pressure. The value of the rate constant at the critical pressure was higher than that observed in liquid CHCI3 and MeCN at the same temperature. At higher pressures, the rate is slower than that in the polar solvents, which reflects the apolar nature of SC-CO2 as a solvent. [Pg.287]

Edman and Simmons [146] synthesized bicyclo[2.2.1]hepta-2,5-diene-2,3-dicar-boxylic anhydride 80 as a facially perturbed dienophile on the basis of the norbornadiene motif, and its top selectivity in Diels-Alder reactions with cyclopentadiene (top-exo top-endo = 60 70 1) was observed by Bartlett (Fig. 14) [147], The most preferred addition was top-exo addition, along with the minor addition modes, top-endo bottom-enrfo addition (Fig. 14). The addition of butadiene to this anhydride preferentially afforded the top-adduct (top bottom = 6 1). In the addition of anthracene, a top-adduct was formed exclusively. [Pg.162]

A few routes to new silenes, usually involving flash vacuum pyrolysis at high temperatures, have been reported. Silenes were proposed as the result of the thermal expulsion of trimethylmethoxysilane, or a similar volatile fragment, from the starting material but frequently, proof that the silenes proposed to account for the observed products were in fact formed was not provided.116 119 The other thermal route employed was the retro-Diels-Alder regeneration of a silene from an adduct with an aromatic compound—often a 9,10-anthracene or 1,4-naphthalene adduct or, in some cases, a 1,4-benzene adduct, as illustrated in Eq. (19).120... [Pg.85]

The study of the cycloaddition behavior of l,l-dichloro-2-neopentylsilene, C Si =CHCH2Bu (2) [3], reveals the high polarity of the Si=C bond and a strong electrophilicity. The [4+2] cycloaddition reactions with anthracene (3), cyclopentadiene (4) and fulvenes (5) proceed as expected surprising, however, the Diels-Alder reactions with dienes are of lower activity, like naphthalene (6) and furans (7). [Pg.105]

Kochi and co-workers engineered heteromolecular charge-transfer crystals of a tricyclic dithiin 34 stacked alternately with anthracene, which can undergo spontaneous Diels-Alder cycloaddition to give a novel artificial crystal system <2001JA87, 2001JA4951>. [Pg.717]

Dimethyl anthracene and diphenyl isobenzofuran form remarkably stable233 cyclopropanone derivatives (353/354), whilst with other diene components (butadiene, tetracyclone, and fulvene) the primarily formed Diels-Alder adducts either suffer ketalizing attack of the solvent (356 - 357, 359 - 358/360) or undergo irreversible changes such as decarbonylation to 362 or rearrangement to 355. [Pg.81]

Most forms of carbon interact strongly with microwaves. When irradiated at 2.45 GHz, amorphous carbon and graphite in powdered form rapidly reach ca. 1000 °C within 1 min of irradiation. An example of a solvent-free Diels-Alder reaction performed on a graphite support is shown in Scheme 4.5. Here, diethyl fuma-rate and anthracene adsorbed on graphite reacted within 1 min of microwave irradiation under open-vessel conditions to provide the corresponding cycloadduct in 92% yield [14]. The maximum temperature recorded by an IR-pyrometer was 370 °C. In other cases, it was necessary to reduce the microwave power and therefore the reaction temperature in order to avoid retro-Diels-Alder reactions [13]. [Pg.60]

Scheme 4.3 Diels—Alder reaction of anthracene with diethyl fumarate. Scheme 4.3 Diels—Alder reaction of anthracene with diethyl fumarate.
The first report suggesting specific activation of an organic reaction by MW was that of Berlan et al. [28] who observed that some Diels-Alder reactions occurred more rapidly on MW heating than under conventional heating at the same temperature (95 °C). The reactions were performed in two different solvents, xylene and dibutyl ether and the rate enhancements were slightly higher in xylene, the less polar solvent. For example the rate enhancement of the reaction of 2,3-dimethyl-l,3-butadiene 21 with methyl vinyl ketone 22 was 8 times in xylene and 2.3 times in dibutyl ether, based on the half lives of the reactions. Reaction of anthracene 3 with diethyl maleate 23 in xylene (Scheme 4.12) resulted in an approximately fourfold rate in-... [Pg.123]

Methods have been described that involve microwave-assisted graphite-supported dry media for the cycloaddition of anthracene, 1-azadienes and 1,2,4,5-tetrazines with several C-C dienophiles and carbonyl compounds in hetero-Diels-Alder reactions [35], This technique leads to a shortening of reaction times, a situation that enables work to be undertaken at ambient pressure in an open reactor to avoid the formation of unwanted compounds by thermal decomposition of reagents or products. [Pg.299]

The scope of the microwave technique in the preparation of fullerene derivatives was determined in the well known Diels-Alder reaction of C6o with anthracene (1) [71], which has been reported to occur under thermal conditions (13% [71a], reflux, toluene, three days 25% [71b], reflux, benzene, 12 h) (Scheme 9.22). In addition to 76, multiply-substituted adducts that undergo cycloreversion to the starting materials were formed. [Pg.310]

The thermal Diels-Alder reactions of anthracene with electron-poor olefinic acceptors such as tetracyanoethylene, maleic anhydride, maleimides, etc. have been studied extensively. It is noteworthy that these reactions are often accelerated in the presence of light. Since photoinduced [4 + 2] cycloadditions are symmetry-forbidden according to the Woodward-Hoffman rules, an electron-transfer mechanism has been suggested to reconcile experiment and theory.212 For example, photocycloaddition of anthracene to maleic anhydride and various maleimides occurs in high yield (> 90%) under conditions in which the thermal reaction is completely suppressed (equation 75). [Pg.268]

The first photochemical reactions to be correlated with PMO theory were the dimerizations of anthracene, tetracene, pentacene, and acenaphthylene. 36> More detailed energy surfaces for the photodimerization reactions of butadiene have also been calculated. 30> In the category of simplified calculations lie studies of the regiospecificity of Diels-Alder reactions 37>, and reactivity in oxetane-forming reactions. 38,39) jn these... [Pg.147]

The site selectivity in the Diels-Alder reactions of 19 and 20 with anthracene is especially noteworthy. The cycloaddition of 19 takes place at... [Pg.160]

Generally, benzene and naphthalene derivatives show only little reactivity as dienes in Diels-Alder synthesis, contrary to anthracene and the higher acene derivatives which are frequently used as dienes. Exceptions are the reactions of benzene and naphthalene derivatives with highly reactive dienophiles such as dicyanoacetylene (DCA), which... [Pg.569]

Here again the high reactivity is due to the gain of aromatic stabilization in the adduct. Polycyclic aromatics are moderately reactive as the diene component in Diels-Alder reactions. Anthracene forms adducts with a number of dienophiles. The addition occurs at the centre ring. The naphthalene ring system is much less reactive. [Pg.52]

The photo-induced single and double Diels-Alder reactions between [60]fullerene and 9-methylanthracene (212) which gave 213 and 214 were performed in the solid state by Mikami and colleagues (equation 60)141. The Diels-Alder reaction was considered to proceed following a photo-induced electron transfer from 9-methylanthracene to fullerene. The higher ionization potential of anthracene should explain its inreactivity toward the cycloaddition reaction with [60]fullerene. [Pg.379]

Kochi and co-workers studied photoinduced Diels-Alder cycloadditions via direct photoexcitation of anthracene as a diene with maleic anhydride and various maleimides as dienophiles. Here, fluorescence-quenching experiments, time-resolved absorption measurements, and the effect of solvent polarity provide striking evidence for an ion-radical pair to be the decisive intermediate [83],... [Pg.216]

In a related reaction (see also Section III, H) the anthracen-9,10-imine (187) with dimethyl acetylenedicarboxylate at 180° gave 26% 1,4-dimethyl-9,10-diphenylanthracene (209) and 14% of its Diels-Alder adduct with the acetylenic ester, the 9,10-ethenoanthracene (210). No nitrogen-containing product was isolated, and the related compounds 188 and 189 failed to react with the acetylenic ester. [Pg.121]

The synthesis of bisantrene begins with Diels-Alder reaction of anthracene (52) and ethylene carbonate (53) to produce adduct 54. Hydrolysis and glycol cleavage lead to bls-carboxaldehyde 55. This readily forms a bis-hydrazone with guanylhydrazine [16]. [Pg.1411]


See other pages where Anthracenes, Diels-Alder with is mentioned: [Pg.129]    [Pg.470]    [Pg.101]    [Pg.160]    [Pg.193]    [Pg.1063]    [Pg.52]    [Pg.107]    [Pg.1041]    [Pg.118]    [Pg.302]    [Pg.143]    [Pg.851]    [Pg.257]    [Pg.1069]   
See also in sourсe #XX -- [ Pg.90 , Pg.96 , Pg.97 , Pg.101 , Pg.102 , Pg.105 , Pg.108 , Pg.110 , Pg.112 , Pg.114 , Pg.117 ]




SEARCH



9- anthracene, Diels-Alder

Anthracene, Diels-Alder reaction with benzyne

Anthracenes, Diels-Alder

Diels-Alder reactions anthracene with maleic anhydride

Diels-Alder reactions with anthracene

The Diels-Alder Reaction with Anthracene-9-methanol

© 2024 chempedia.info