Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anthracene mechanism

The cases of pentamethylbenzene and anthracene reacting with nitronium tetrafluoroborate in sulpholan were mentioned above. Each compound forms a stable intermediate very rapidly, and the intermediate then decomposes slowly. It seems that here we have cases where the first stage of the two-step process is very rapid (reaction may even be occurring upon encounter), but the second stages are slow either because of steric factors or because of the feeble basicity of the solvent. The course of the subsequent slow decomposition of the intermediate from pentamethylbenzene is not yet fully understood, but it gives only a poor yield of pentamethylnitrobenzene. The intermediate from anthracene decomposes at a measurable speed to 9-nitroanthracene and the observations are compatible with a two-step mechanism in which k i k E and i[N02" ] > / i. There is a kinetic isotope effect (table 6.1), its value for the reaction in acetonitrile being near to the... [Pg.115]

The results are consistent with the rate-determining step being addition of the aryl radical to the aromatic ring, Eq. (9). Support for this mechanism is derived from the results of three other studies (a) When A -nitrosoacetanilide is decomposed in pyridine, the benzene formed by abstraction of hydrogen from pyridine by phenyl radical accounts for only 1 part in 120 of the reaction leading to phenyl-pyridines. (b) 9,9, 10,lCK-Tetrahydro-10,10 -diphenyl-9,9 -bianthryl is formed in the reaction between phenyl radicals and anthracene, probably by the addition mechanism in Eq. (11). Adducts are also formed in the reactions of benzyl radicals with anthracene- and acridine. ... [Pg.137]

It is notable that pyridine is activated relative to benzene and quinoline is activated relative to naphthalene, but that the reactivities of anthracene, acridine, and phenazine decrease in that order. A small activation of pyridine and quinoline is reasonable on the basis of quantum-mechanical predictions of atom localization encrgies, " whereas the unexpected decrease in reactivity from anthracene to phenazine can be best interpreted on the basis of a model for the transition state of methylation suggested by Szwarc and Binks." The coulombic repulsion between the ir-electrons of the aromatic nucleus and the p-electron of the radical should be smaller if the radical approaches the aromatic system along the nodal plane rather than perpendicular to it. This approach to a nitrogen center would be very unfavorable, however, since the lone pair of electrons of the nitrogen lies in the nodal plane and since the methyl radical is... [Pg.162]

This was confirmed by taking a sample of 9-acetylanthracene and allowing it to isomerize in the ionic liquid. This gave a mixture of anthracene, 1,5-diacetylan-thracene and 1,8-diacetylanthracene. It should be noted that a proton source was needed for this reaction to occur, implying an acid-catalyzed mechanism (Scheme 5.1-65) [95]. [Pg.206]

In a dry, 1-1., two-necked flask, equipped with a mechanical stirrer and a reflux condenser fitted with a drying tube, are placed 17.8 g. (0.100 mole) of anthracene (Note 1), 27.2 g. (0.202 mole) of anhydrous cupric chloride (Note 2), and 500 ml. of carbon tetrachloride (Note 3). The reaction mixture is stirred and heated under reflux for 18-24 hours. The brown cupric chloride is gradually converted to white cuprous chloride, and hydrogen chloride is gradually evolved. At the end of the reaction the cuprous chloride is removed by filtration, and the carbon tetrachloride solution is passed through a 35-mm. chromatographic column filled with 200 g. of alumina (Note 4). The column is eluted with 400 ml. of carbon tetrachloride. The combined eluates are evaporated to dryness to give 19-21 g. (89-99%) of 9-chloroanthracene as a lemon-yellow solid, m.p. 102-104° (Note 5). Crystallization of the product from petroleum ether... [Pg.15]

Luche and coworkers [34] investigated the mechanistic aspects of Diels-Alder reactions of anthracene with either 1,4-benzoquinone or maleic anhydride. The cycloaddition of anthracene with maleic anhydride in DCM is slow under US irradiation in the presence or absence of 5% tris (p-bromophenyl) aminium hexachloroantimonate (the classical Bauld monoelectronic oxidant, TBPA), whereas the Diels Alder reaction of 1,4-benzoquinone with anthracene in DCM under US irradiation at 80 °C is slow in the absence of 5 % TBPA but proceeds very quickly and with high yield at 25 °C in the presence of TBPA. This last cycloaddition is also strongly accelerated when carried out under stirring solely at 0°C with 1% FeCh. The US-promoted Diels Alder reaction in the presence of TBPA has been justified by hypothesizing a mechanism via radical-cation of diene, which is operative if the electronic affinity of dienophile is not too weak. [Pg.157]

The mechanism of cycloaddition reaction of maleic anhydride with anthracene promoted by US irradiation has been the subject of many controversies [32, 37]. Recent work of Da Cunha and Garrigues [35] shows that the reaction proceeds in toluene solution in the 60 85 °C temperature range in 6 3 h. [Pg.157]

Evans WC, HN Fernley, E Griffiths (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism. Biochem J 95 819-831. [Pg.419]

The most significant differences (i.e. independence) in the analytical methods are provided in the final chromatographic separation and detection step using GC/ MS and LC-FL. GC and reversed-phase LG provide significantly different separation mechanisms for PAHs and thus provide the independence required in the separation. The use of mass spectrometry (MS) for the GC detection and fluorescence spectroscopy for the LG detection provide further independence in the methods, e.g. MS can not differentiate among PAH isomers whereas fluorescence spectroscopy often can. For the GC/MS analyses the 5% phenyl methylpolysiloxane phase has been a commonly used phase for the separation of PAHs however, several important PAH isomers are not completely resolved on this phase, i.e. chrysene and triphenylene, benzo[b]fluoranthene and benzofjjfluoranthene, and diben-z[o,h]anthracene and dibenz[a,c]anthracene. To achieve separation of these isomers, GC/MS analyses were also performed using two other phases with different selectivity, a 50% phenyl methylpolysiloxane phase and a smectic liquid crystalline phase. [Pg.94]

We now address ourselves to the problem of accounting for the observations noted in Section 2.2a by building a mechanism for the dimerization of anthracene and related compounds. [Pg.35]

In the first mechanism the excimer is represented as a common intermediate for the formation of dimer and the deactivation of the excited anthracene. In the second, excimer formation is totally nonproductive with regard to dimer formation. Again as in paragraph (b) one can think of the excimer in the second mechanism as having a structure that, if dimerization proceeded, would yield the unobserved head-to-head product ... [Pg.39]

In this chapter we will endeavor to answer the following questions What does the photochemist do in preparing to investigate the photochemical behavior of a molecule What equipment does he use to carry out his experiments Once he has determined the results of the reaction, how can he develop a mechanism to account for these results In answering these questions we will be concerned mainly with the photochemistry of anthracene and related compounds. [Pg.316]

Those favoring the singlet oxygen mechanism (mechanism B) counter by asking why, if a mole-oxide is formed, must the oxygen be transferred to another anthracene to obtain a stable product <85) It would appear that if the intermediate has the structure shown below, that a single closure would produce the endoperoxide directly ... [Pg.342]

Clearly all the answers to the questions of the mechanisms of both the photodimerization and photooxidation of anthracene are not yet known. Hopefully, what we have seen in this chapter will serve to convince the reader that photochemistry is still an exciting and challenging field of study in which there is ample room for further research. [Pg.342]

Research in PAH carcinogenesis has made major advances in the past decade. Most notable has been identification of diol epoxide metabolites as the active forms of benzo[a]pyrene, 7,12-dimethylbenz[tf]anthracene, and other carcinogenic PAH. This finding has stimulated enormous research activity and opened the way to determination of the detailed molecular mechanism of action of this important class of carcinogenic molecules. [Pg.6]

Angstrom units, definition, 128 Anthracene, carcinogenic activity, 45 Anthracenedihydrodiols, synthesis, 45 Arylnitrones, reaction mechanism, 363f... [Pg.400]

The thermal Diels-Alder reactions of anthracene with electron-poor olefinic acceptors such as tetracyanoethylene, maleic anhydride, maleimides, etc. have been studied extensively. It is noteworthy that these reactions are often accelerated in the presence of light. Since photoinduced [4 + 2] cycloadditions are symmetry-forbidden according to the Woodward-Hoffman rules, an electron-transfer mechanism has been suggested to reconcile experiment and theory.212 For example, photocycloaddition of anthracene to maleic anhydride and various maleimides occurs in high yield (> 90%) under conditions in which the thermal reaction is completely suppressed (equation 75). [Pg.268]

Ehrenfest dynamics with the MMVB method has also been applied to the study of intermolecular energy transfer in anthryl-naphthylalkanes [85]. These molecules have a naphthalene joined to a anthracene by a short alkyl —(CH)n— chain. After exciting the naphthalene moiety, if n = 1 emission is seen from both parts of the system, if n = 3 emission is exclusively from the anthracene. The mechanism of this energy exchange is still not clear. This system is at the limits of the MMVB method, and the number of configurations required means that only a small number of trajectories can be run. The method is also unable to model the zwitterionic states that may be involved. Even so, the calculations provide some mechanistic information, which supports a stepwise exchange of energy, rather than the conventional direct process. [Pg.410]


See other pages where Anthracene mechanism is mentioned: [Pg.305]    [Pg.134]    [Pg.513]    [Pg.236]    [Pg.732]    [Pg.190]    [Pg.338]    [Pg.142]    [Pg.193]    [Pg.11]    [Pg.169]    [Pg.182]    [Pg.196]    [Pg.69]    [Pg.42]    [Pg.42]    [Pg.117]    [Pg.304]    [Pg.325]    [Pg.328]    [Pg.335]    [Pg.277]    [Pg.343]    [Pg.15]    [Pg.15]    [Pg.306]    [Pg.306]    [Pg.320]    [Pg.26]    [Pg.37]    [Pg.77]   
See also in sourсe #XX -- [ Pg.443 ]




SEARCH



Mechanism reaction with anthracene

© 2024 chempedia.info