Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anode, definition

Equations 11.19-11.21 are defined for a potentiometric electrochemical cell in which the pH electrode is the cathode. In this case an increase in pH decreases the cell potential. Many pH meters are designed with the pH electrode as the anode so that an increase in pH increases the cell potential. The operational definition of pH then becomes... [Pg.491]

The cell is the basis of all electrolysis. The anode admits current into the electrolyte and the cathode serves as a means of exit for the electrical current. The electrical flow provides a definition for electrolysis the flow of current from the anode through the electrolyte and out of the cell through the cathode with ensuing decomposition of the electrolyte, with products being formed at the electrodes. [Pg.521]

By definition, electrode II at which oxidation is the predominant reaction is the anode, whereas electrode I at which reduction is the predominant reaction is the cathode. It is apparent that the removal of electrons from Ag will result in the potential of its interface becoming more positive, whilst the concomitant supply of electrons to the interface of Ag, will make its potential become more negative than the equilibrium potential ... [Pg.78]

Electrocatalysis Again by definition, an electrocatalyst is a solid, in fact an electrode, which can accelerate a process involving a net charge transfer, such as e.g. the anodic oxidation of H2 or the cathodic reduction of 02 in solid electrolyte cells utilizing YSZ ... [Pg.9]

A definite decomposition voltage occurs for the following reason. As soon as there is a potential difference between the electrodes, H+ ions move to the cathode and Cl ions to the anode. The ions are discharged, forming layers of adsorbed gas on the inert metal surfaces. This essentially amounts to having a hydrogen electrode and a chlorine electrode in place of the two platinum electrodes. The outcome is a typical chemical cell ... [Pg.679]

In electrorefining and in electroplating, where the same metal is used as a soluble anode, the theoretical cell voltage is zero or almost zero therefore, the energy efficiency, as per this definition, is expected to be zero or close to zero, whatever may be the current efficiency. The actual cell voltage depends on the current density, the temperature, the electrolyte... [Pg.701]

The functional dependence of the activation energy of the anodic electrode reaction can be derived as follows. According to the definition of the rate of the electrode reaction, the partial current density... [Pg.267]

Underpotential deposition of heavy metals on H2 evolving electrodes is a well known problem [133], The existence of a direct correlation between H2 evolution activity and metal work function, makes UPD very likely on high work function electrodes like Pt or Ni. Cathode poisoning for H2 evolution is aggravated by UPD for two reasons. First, deposition potentials of UPD metals are shifted to more anodic values (by definition), and second, UPD favors a monolayer by monolayer growth causing a complete coverage of the cathode [100]. Thus H2 evolution may be poisoned by one monolayer of cadmium for example, the reversible bulk deposition potential of which is cathodic to the H2 evolution potential. [Pg.117]

In this paper, we presented new information, which should help in optimising disordered carbon materials for anodes of lithium-ion batteries. We clearly proved that the irreversible capacity is essentially due to the presence of active sites at the surface of carbon, which cause the electrolyte decomposition. A perfect linear relationship was shown between the irreversible capacity and the active surface area, i.e. the area corresponding to the sites located at the edge planes. It definitely proves that the BET specific surface area, which represents the surface area of the basal planes, is not a relevant parameter to explain the irreversible capacity, even if some papers showed some correlation with this parameter for rather low BET surface area carbons. The electrolyte may be decomposed by surface functional groups or by dangling bonds. Coating by a thin layer of pyrolytic carbon allows these sites to be efficiently blocked, without reducing the value of reversible capacity. [Pg.257]

In an individual molten carbamide, the electrode processes are feebly marked at melt decomposition potentials because of its low electrical conductivity. Both electrode processes are accompanied by gas evolution (NH3, CO, C02, N2) and NH2CN (approximately) is formed in melt. In eutectic carbamide-chloride melts electrode processes take place mainly independently of each other. The chlorine must evolve at the anode during the electrolysis of carbamide - alkali metal and ammonium chloride melts, which were revealed in the electrolysis of the carbamide-KCl melt. But in the case of simultaneous oxidation of carbamide and NH4CI, however, a new compound containing N-Cl bond has been found in anode gases instead of chlorine. It is difficult to fully identify this compound by the experimental methods employed in the present work, but it can be definitely stated that... [Pg.441]

The mentioned method for synthesis of oxide-hydroxide compounds (Ni, Cr, Co) is more controllable and enables with production of electrode films definite amounts of components. Therefore it guarantees the reproducibility of their compositions and properties. Using the above method we were able to produce the following oxide compounds zero valence metal and lowest oxidation state oxide-hydroxide compounds in cathode process and oxide-hydroxide compounds (in anode process the oxide compounds consist of highest oxidation state oxide-hydroxide compounds). Both type compounds possesses electronic and ionic conductivity. [Pg.495]

Nygaard et al. [752] compared two methods for the determination of cadmium, lead, and copper in seawater. One method employs anodic stripping voltammetry at controlled pH (8.1,5.3 and 2.0) the other involves sample pretreatment with Chelex 100 resin before ASV analysis. Differences in the results are discussed in terms of the definition of available metal and differences in the analytical methods. [Pg.269]

An electrochemical cell is defined as two or more half-cells in contact with a common electrolyte . We see from this definition how a cell forms within the mouth, with aluminium as the more positive pole (the anode) and the fillings acting as the more negative pole (the cathode). Saliva completes this cell as an electrolyte. All the electrochemical processes occurring are contained within the boundaries of the cell. [Pg.280]


See other pages where Anode, definition is mentioned: [Pg.67]    [Pg.67]    [Pg.507]    [Pg.72]    [Pg.17]    [Pg.42]    [Pg.124]    [Pg.179]    [Pg.448]    [Pg.177]    [Pg.5]    [Pg.1161]    [Pg.595]    [Pg.606]    [Pg.377]    [Pg.567]    [Pg.265]    [Pg.94]    [Pg.227]    [Pg.13]    [Pg.41]    [Pg.142]    [Pg.223]    [Pg.117]    [Pg.584]    [Pg.649]    [Pg.673]    [Pg.682]    [Pg.683]    [Pg.717]    [Pg.125]    [Pg.376]    [Pg.114]    [Pg.87]    [Pg.84]    [Pg.113]   
See also in sourсe #XX -- [ Pg.114 ]

See also in sourсe #XX -- [ Pg.141 ]

See also in sourсe #XX -- [ Pg.11 , Pg.12 ]

See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Anodic current, definition

Anodic dissolution definition

Anodizing definition

© 2024 chempedia.info