Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Animal analysis

Because animals may accumulate mycotoxins in then-tissues, and considering the high toxicity of some products, it is a public health concern to have analytical techniques available for routine detection and quantitation of residues of these compounds in edible tissues of food-producing animals. Analysis of animal tissues may be difficult for several reasons ... [Pg.1545]

Vector quantities, such as a magnetic field or the gradient of electron density, can be plotted as a series of arrows. Another technique is to create an animation showing how the path is followed by a hypothetical test particle. A third technique is to show flow lines, which are the path of steepest descent starting from one point. The flow lines from the bond critical points are used to partition regions of the molecule in the AIM population analysis scheme. [Pg.117]

The following data were collected as part of a study to determine the effect of sampling variance on the analysis of drug animal-feed formulations.2... [Pg.181]

Animal fats and vegetable oils are triacylglycerols, or triesters, formed from the reaction of glycerol (1,2, 3-propanetriol) with three long-chain fatty acids. One of the methods used to characterize a fat or an oil is a determination of its saponification number. When treated with boiling aqueous KOH, an ester is saponified into the parent alcohol and fatty acids (as carboxylate ions). The saponification number is the number of milligrams of KOH required to saponify 1.000 g of the fat or oil. In a typical analysis, a 2.085-g sample of butter is added to 25.00 ml of 0.5131 M KOH. After saponification is complete, the excess KOH is back titrated with 10.26 ml of0.5000 M HCl. What is the saponification number for this sample of butter ... [Pg.363]

Samples of animal bones weighing approximately 3 g are ashed at 600 °C until the entire bone is ash-white. Samples are then crushed in a mortar and pestle. A portion of the sample is digested in HCl and diluted to a known volume. The concentrations of zinc and strontium are determined by atomic absorption. The analysis for strontium illustrates the use of a protecting agent as La(N03)3 is added to prevent an interference due to the formation of refractory strontium phosphate. [Pg.449]

In milk fat, cholesterol is associated with Hpoproteins in the milk fat globule. It is also a component of animal membranes and controls rigidity and permeabihty of the membranes. Cholesterol has interesting surface properties and can occur in Hquid crystalline forms. Plants contain sterols such as P-sitosterol [83-46-5] (4b) or stigmasterol [83-48-7] (4c). Their functions in plant metaboHsm are not yet well understood. Analysis of sterols has proven useful for detection of adulteration of edible fats (9). [Pg.124]

Microscopists in every technical field use the microscope to characterize, compare, and identify a wide variety of substances, eg, protozoa, bacteria, vimses, and plant and animal tissue, as well as minerals, building materials, ceramics, metals, abrasives, pigments, foods, dmgs, explosives, fibers, hairs, and even single atoms. In addition, microscopists help to solve production and process problems, control quaUty, and handle trouble-shooting problems and customer complaints. Microscopists also do basic research in instmmentation, new techniques, specimen preparation, and appHcations of microscopy. The areas of appHcation include forensic trace evidence, contamination analysis, art conservation and authentication, and asbestos control, among others. [Pg.328]

Since muscone (101), by itself, does not reproduce the total odor impression of this musk, IFF chemists (56) as early as 1971 in an analysis of tincture of Tonquin musk, reported a series of macrocycHc ketones (Table 16) which play a key role in creating the characteristic odor of this musk (11). The introduction of a double bond into a macrocycHc ketone (eg, 102) changes the odor from flowery musk to animal musk. [Pg.315]

Fiber Analysis. Paper may be composed of one or several types of fibers, eg, animal, vegetable, mineral, and synthetic (see Eibers). Paper is generally composed of woody vegetable fibers obtained from coniferous (softwood) and deciduous (hardwood) trees. QuaUtative and quantitative methods have been developed to determine the fibrous constituents in a sheet of paper (see TAPPI T401). However, the proliferation in the number and types of pulping processes used have made the analysis of paper a much more complex problem. Comprehensive reviews of the methods are given in References 20 and 23. [Pg.11]

To further improve the general safety standards, the Delaney Clause was included in the Pood Additives Amendment of 1958. The Delaney Clause states that no food additive or color additive can be deemed safe if it has been found to induce cancer when ingested by humans or animals (23). The Clause acts as an absolute prohibition on the use of any additive found to cause cancer without any regard for whether, or to what extent, the substance is hazardous to human health. As scientific advances continue, both in the realm of food technology and analysis of previously undetected contaminants, the... [Pg.85]

An on-line concentration, isolation, and Hquid chromatographic separation method for the analysis of trace organics in natural waters has been described (63). Concentration and isolation are accompHshed with two precolumns connected in series the first acts as a filter for removal of interferences the second actually concentrates target solutes. The technique is appHcable even if no selective sorbent is available for the specific analyte of interest. Detection limits of less than 0.1 ppb were achieved for polar herbicides (qv) in the chlorotriazine and phenylurea classes. A novel method for deterrnination of tetracyclines in animal tissues and fluids was developed with sample extraction and cleanup based on tendency of tetracyclines to chelate with divalent metal ions (64). The metal chelate affinity precolumn was connected on-line to reversed-phase hplc column, and detection limits for several different tetracyclines in a variety of matrices were in the 10—50 ppb range. [Pg.245]

Thermal neutron activation analysis has been used for archeological samples, such as amber, coins, ceramics, and glass biological samples and forensic samples (see Forensic chemistry) as weU as human tissues, including bile, blood, bone, teeth, and urine laboratory animals geological samples, such as meteorites and ores and a variety of industrial products (166). [Pg.252]

Numerous high pressure Hquid chromatographic techniques have been reported for specific sample forms vegetable oHs (55,56), animal feeds (57,58), seta (59,60), plasma (61,62), foods (63,64), and tissues (63). Some of the methods requite a saponification step to remove fats, to release tocopherols from ceHs, and/or to free tocopherols from their esters. AH requite an extraction step to remove the tocopherols from the sample matrix. The methods include both normal and reverse-phase hplc with either uv absorbance or fluorescence detection. AppHcation of supercritical fluid (qv) chromatography has been reported for analysis of tocopherols in marine oHs (65). [Pg.148]

Mycotoxins, toxic metaboUtes of some fungi, can be assayed by immunochemical techniques to determine concentration in animal feed and foodstuffs. Some of the analytes assayed in kits and the detection limits are Hsted in Table 4 (45). These assays are especially advantageous for routine analysis of large samples of foodstuffs (45,46). [Pg.101]

The analysis of cocoa shell (7) is given in Table 4. In the United States, shells are often used as mulch or fertilizer for ornamental and edible plants, as animal feed, and as fuel for boilers. [Pg.92]


See other pages where Animal analysis is mentioned: [Pg.190]    [Pg.190]    [Pg.153]    [Pg.148]    [Pg.157]    [Pg.296]    [Pg.608]    [Pg.435]    [Pg.76]    [Pg.435]    [Pg.190]    [Pg.190]    [Pg.153]    [Pg.148]    [Pg.157]    [Pg.296]    [Pg.608]    [Pg.435]    [Pg.76]    [Pg.435]    [Pg.467]    [Pg.229]    [Pg.296]    [Pg.648]    [Pg.37]    [Pg.241]    [Pg.243]    [Pg.198]    [Pg.103]    [Pg.38]    [Pg.432]    [Pg.451]    [Pg.149]    [Pg.326]    [Pg.342]    [Pg.421]    [Pg.42]    [Pg.71]    [Pg.128]    [Pg.282]    [Pg.101]    [Pg.152]    [Pg.373]    [Pg.458]    [Pg.34]    [Pg.193]   
See also in sourсe #XX -- [ Pg.177 ]

See also in sourсe #XX -- [ Pg.76 , Pg.77 ]




SEARCH



Analysis animal origin

Analysis animal, digestibility

Animal feed analysis

Animal food allergens analysis

Animal food analysis

Animal studies data analysis problems

Animals, differential tissue analysis

Food analysis animal proteins

The Analysis of Animal Feed and Plant Materials

© 2024 chempedia.info