Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

And HSAB theory

These concepts play an important role in the Hard and Soft Acid and Base (HSAB) principle, which states that hard acids prefer to react with hard bases, and vice versa. By means of Koopmann s theorem (Section 3.4) the hardness is related to the HOMO-LUMO energy difference, i.e. a small gap indicates a soft molecule. From second-order perturbation theory it also follows that a small gap between occupied and unoccupied orbitals will give a large contribution to the polarizability (Section 10.6), i.e. softness is a measure of how easily the electron density can be distorted by external fields, for example those generated by another molecule. In terms of the perturbation equation (15.1), a hard-hard interaction is primarily charge controlled, while a soft-soft interaction is orbital controlled. Both FMO and HSAB theories may be considered as being limiting cases of chemical reactivity described by the Fukui ftinction. [Pg.353]

Any suspected new electron flow path should be well tested before it is accepted as a new pathway. It may be just a combination of (Section 7.3) or a variation on (Section 7.4) already known paths. Watch for AS problems of too many things happening at once. Look for steric and strain problems and check the orbital alignment with molecular models—orbitals that will become double bonds in the product must be able to get close to coplanar in the starting material. Check any intermediates for stability, especially if charged. Check that the electronics fit HOMO-LUMO and HSAB theory. Check the energetics with a Af/ calculation or the Ap Ta rule, and be skeptical anyway, it s healthy. [Pg.197]

The Hard-Soft-Add-Base (HSAB) theory was developed by Pearson in 1963. According to this theory, Lewis acids and Lewis bases are divided into two groups on one hand hard acids and bases, which are usually small, weakly polarizable species with highly localised charges, and on the other hand soft acids and bases which are large, polarizable species with delocalised charges. A selection of Lewis acids, ordered according to their hardness in aqueous solution is presented in Table 1.3. [Pg.28]

The theory predicts high stabilities for hard acid - hard base complexes, mainly resulting from electrostatic interactions and for soft acid - soft base complexes, where covalent bonding is also important Hard acid - soft base and hard base - soft acid complexes usually have low stability. Unfortunately, in a quantitative sense, the predictive value of the HSAB theory is limited. Thermodynamic analysis clearly shows a difference between hard-hard interactions and soft-soft interactions. In water hard-hard interactions are usually endothermic and occur only as a result of a gain in entropy, originating from a liberation of water molecules from the hydration shells of the... [Pg.28]

More complete interpretations of Diels-Alder regioselectivity have been developed. MO results can be analyzed from an electrostatic perspective by calculating potentials at the various atoms in the diene and dienophile. These results give a more quantitatively accurate estimate of the substituent effects. Diels-Alder regioselectivity can also be accounted for in terms of HSAB theory (see Section 1.2.3). The expectation would be that the most polarizable (softest) atoms would lead to bond formation and that regioselectivity would reflect the best mateh between the diene and dienophile termini. These ideas have been applied using 3-2IG computations. The results are in agreement with the ortho rule for normal-electron-demand Diels-Alder reactions. ... [Pg.645]

Calculations at several levels of theory (AMI, 6-31G, and MP2/6-31G ) find lower activation energies for the transition state leading to the observed product. The transition-state calculations presumably reflect the same structural features as the frontier orbital approach. The greatest transition-state stabilization should arise from the most favorable orbital interactions. As discussed earlier for Diels-Alder reactions, the-HSAB theory can also be applied to interpretation of the regiochemistry of 1,3-dipolar cycloaddi-... [Pg.648]

In this review, CPOs constructed by covalent bonds are mainly focused on however, stable coordination bonds comparable to the stability of the covalent bonds have potential for future enhanced molecular design of novel CPOs. One representative is the bond between pyridine-type nitrogen and metal, which is widely used in supramolecular chemistry, that is, the cyclic supramolecular formation reaction between pyridine-substituted porphyrin and metal salts (Fig. 6d) [27,28]. Palladium salts are frequently used as the metal salts. From the viewpoint of the hard and soft acid and base theory (HSAB), this N-Pd coordination bond is a well-balanced combination, because the bonds between nitrogen and other group X metals, N-Ni and Ni-Pt coordination bonds, are too weak and too strong to obtain the desired CPOs, respectively. For the former, the supramolecular architectures tend to dissociate into pieces in the solution state, and for the latter. [Pg.76]

Yatsimirskii (1970) attempted to quantify HSAB theory and produced hardness indices for adds and bases. These indices were obtained by plotting the logarithms of the equilibrium constants for the reactions of bases with the proton (the hardest add) against similar values for the reactions with CHjHg (one of the softest adds). For adds, the hydroxyl ion (the hardest base) and the chloride ion (a soft base) were chosen. [Pg.25]

According to Yatsimirskii, group (2) and (3) species are equivalent to Pearson s hard acids and bases, and group (4), (5) and (6) species correspond to Pearson s soft acids and bases. This classification is of more value than HSAB theory to our subject. It can be seen that all cementforming anions come from group (3) and cations from groups (3), (4) and (5). Thus, the bonding in cement matrices formed from cation-anion combinations is not purely a but contains some n character. [Pg.26]

Cation-selective ionophores are the most successful in polymeric ISEs and selectivi-ties exceeding ten orders of magnitude became quite common. The cation-ionophore binding occurs dominantly due to Lewis interactions and could be understood in terms of hard and soft acid and bases theory (HSAB). While hard base oxygen atoms originate from ester, ether or carbonyl functionalities, and interact with hard acid alkaline cations, the softer sulfur or nitrogen atoms better bind with transition metal ions. Cation... [Pg.121]

Figures 11(a) and 11(b) [112] show the variation of Ni-Ge-P deposition rate and Ge content as a function of aspartic acid and Ge(IV) concentration, respectively. A relatively low P content, ca. 1-2 at%, was observed in the case of films exhibiting a high concentration of Ge (> 18 at%). Like other members of its class, which includes molybdate and tungstate, Ge(IY) behaves a soft base according to the hard and soft acids and bases theory (HSAB) originated by Pearson [113, 114], capable of strong adsorption, or displaying inhibitor-like behavior, on soft acid metal surfaces. In weakly acidic solution, uncomplexed Ge(IV) most probably exists as the hydrated oxide, or Ge(OH)4, which, due to acid-base reactions, may be more accurately represented as [Gc(OH)4 nO ] ". Figures 11(a) and 11(b) [112] show the variation of Ni-Ge-P deposition rate and Ge content as a function of aspartic acid and Ge(IV) concentration, respectively. A relatively low P content, ca. 1-2 at%, was observed in the case of films exhibiting a high concentration of Ge (> 18 at%). Like other members of its class, which includes molybdate and tungstate, Ge(IY) behaves a soft base according to the hard and soft acids and bases theory (HSAB) originated by Pearson [113, 114], capable of strong adsorption, or displaying inhibitor-like behavior, on soft acid metal surfaces. In weakly acidic solution, uncomplexed Ge(IV) most probably exists as the hydrated oxide, or Ge(OH)4, which, due to acid-base reactions, may be more accurately represented as [Gc(OH)4 nO ] ".
The differences in reactivity between the nitrogen and the sulfur atom in OZTs reveal that most reactions can be interpreted with reference to Pearson s HSAB theory.56 In the case of l,3-oxazolidine-2-thiones, one may consider the nitrogen atom as a harder basic center than the softer sulfur atom. [Pg.146]

In order to clarify the different behavior of anion 2 and 3 (Scheme 4.10) toward DMC, various anions with different soft/hard character (aliphatic and aromatic amines, alcohoxydes, phenoxides, thiolates) were compared with regard to nucleophilic substitutions on DMC, using different reaction conditions. Results were in good agreement with the hard-soft acid-base (HSAB) theory. Accordingly, the high selectivity of monomethylation of CH2 acidic compounds and primary aromatic amines with DMC can be explained by two different subsequent reactions, which are due to the double electrophilic character of DMC. The first... [Pg.90]

This pronounced double selectivity has been explained in terms of Pearson s HSAB theory. According to this procedure, A-methylcarbamates have been prepared from primary aliphatic and aromatic amines, either at reflux temperature of... [Pg.96]

Further examination of the results indicated that by invocation of Pearson s Hard-Soft Acid-Base (HSAB) theory (57), the results are consistent with experimental observation. According to Pearson s theory, which has been generalized to include nucleophiles (bases) and electrophiles (acids), interactions between hard reactants are proposed to be dependent on coulombic attraction. The combination of soft reactants, however, is thought to be due to overlap of the lowest unoccupied molecular orbital (LUMO) of the electrophile and the highest occupied molecular orbital (HOMO) of the nucleophile, the so-called frontier molecular orbitals. It was found that, compared to all other positions in the quinone methide, the alpha carbon had the greatest LUMO electron density. It appears, therefore, that the frontier molecular orbital interactions are overriding the unfavorable coulombic conditions. This interpretation also supports the preferential reaction of the sulfhydryl ion over the hydroxide ion in kraft pulping. In comparison to the hydroxide ion, the sulfhydryl is relatively soft, and in Pearson s theory, soft reactants will bond preferentially to soft reactants, while hard acids will favorably combine with hard bases. Since the alpha position is the softest in the entire molecule, as evidenced by the LUMO density, the softer sulfhydryl ion would be more likely to attack this position than the hydroxide. [Pg.274]

Chemoselectivity can also be partially explained by a hard and soft acid and base (HSAB) theory.11 From HSAB theory, the lithium cation is a harder acid than the magnesium cation and, with a, 3-unsatu-rated ketones, C-l (carbonyl carbon) is a harder base than C-3 thus reactions of organolithiums are preferred at the the hard site, C-l, affording 1,2-addition products. The structure of the carbanion is also... [Pg.70]


See other pages where And HSAB theory is mentioned: [Pg.184]    [Pg.353]    [Pg.1371]    [Pg.494]    [Pg.184]    [Pg.353]    [Pg.1371]    [Pg.494]    [Pg.5]    [Pg.293]    [Pg.361]    [Pg.3]    [Pg.549]    [Pg.126]    [Pg.398]    [Pg.154]    [Pg.186]    [Pg.192]    [Pg.128]    [Pg.36]    [Pg.232]    [Pg.491]    [Pg.721]    [Pg.70]    [Pg.87]    [Pg.144]    [Pg.267]   
See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.5 ]




SEARCH



HSAB

HSAB theory

HSAB-Theorie

© 2019 chempedia.info