Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analyzed Laser Desorption Ionization MALDI

Mass-Analyzed Laser Desorption Ionization (MALDI) [Pg.284]

The previous discussion has centered on how to obtain as much molecular mass and chemical structure information as possible from a given sample. However, there are many uses of mass spectrometry where precise isotope ratios are needed and total molecular mass information is unimportant. For accurate measurement of isotope ratio, the sample can be vaporized and then directed into a plasma torch. The sample can be a gas or a solution that is vaporized to form an aerosol, or it can be a solid that is vaporized to an aerosol by laser ablation. Whatever method is used to vaporize the sample, it is then swept into the flame of a plasma torch. Operating at temperatures of about 5000 K and containing large numbers of gas ions and electrons, the plasma completely fragments all substances into ionized atoms within a few milliseconds. The ionized atoms are then passed into a mass analyzer for measurement of their atomic mass and abundance of isotopes. Even intractable substances such as glass, ceramics, rock, and bone can be examined directly by this technique. [Pg.284]

Ionization Method Type of Molecular Ion Formed Good Molecular Mass Information Abundant Fragment Ions MS/MS Needed for Structural Information Accurate Values for Isotope Ratios [Pg.285]

Since detailed chemical structure information is not usually required from isotope ratio measurements, it is possible to vaporize samples by simply pyrolyzing them. For this purpose, the sample can be placed on a tungsten, rhenium, or platinum wire and heated strongly in vacuum by passing an electric current through the wire. This is thermal or surface ionization (TI). Alternatively, a small electric furnace can be used when removal of solvent from a dilute solution is desirable before vaporization of residual solute. Again, a wide variety of mass analyzers can be used to measure m/z values of atomic ions and their relative abundances. [Pg.285]


Laser-desorption mass spectrometry (LDMS) or matrix-assisted laser desorption ionization (MALDI) coupled to a time-of-flight analyzer produces protonated or deprotonated molecular ion clusters for peptides and proteins up to masses of several thousand. [Pg.417]

With the identities and amounts of amino acids known, the peptide is sequenced to find out in what order the amino acids are linked together. Much peptide sequencing is now done by mass spectrometry, using either electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALDI) linked to a time-of-flight (TOF) mass analyzer, as described in Section 12.4. Also in common use is a chemical method of peptide sequencing called the Edman degradation. [Pg.1031]

The focus of this chapter is the development of a technique often called wholecell matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) or whole-cell MALDI-TOF MS. Some groups prefer to use terms such as intact or unprocessed rather than whole, but the intended meaning is the same regardless of which word is used. As noted in the first chapter of this book, there are many different methods for the analysis of bacteria. However, for the analysis of intact or unprocessed bacteria, whole-cell MALDI-TOF MS is the most commonly used approach. This method is very rapid. MALDI-TOF MS analysis of whole cells takes only minutes because the samples can be analyzed directly after collection from a bacterial culture suspension. Direct MALDI MS analysis of fungi or viruses is similar in approach1,2 but is not covered in this chapter. MALDI-TOF MS of whole cells was developed with very rapid identification or differentiation of bacteria in mind. The name (whole cell) should not be taken to imply that the cells are literally intact or whole. Rather, it should be taken to mean that the cells that have not been treated or processed in any way specifically for the removal or isolation of any cellular components from any others. In whole-cell analysis the cells have been manipulated only as necessary to... [Pg.125]

The ability to resolve and characterize complicated protein mixtures by the combination of 2DLC and online mass spectrometry permits the combination of sample fractionation/simplification, top-down protein mass information, and bottom-up peptide level studies. In our lab, the simplified fractions generated by 2D(IEX-RP)LC are digested and analyzed using common peptide-level analysis approaches, including peptide mass fingerprinting (Henzel et al., 1993 Mann et al., 1993), matrix-assisted laser desorption/ionization (MALDI) QTOF MS/MS (Millea et al., 2006), and various capillary LC/MS/MS methodologies (e.g., Ducret et al., 1998). [Pg.308]

The analysis for proteins present in plasma or a cell extract is a challenging task due to their complexity and the great difference between protein concentrations present in the sample. Simple mixtures of intact proteins can be analyzed by infusion with electrospray ionization and more complex ones by matrix assisted laser desorption ionization. MALDI is more suited for complex mixtures because for each protein an [M+H]+ signal is observed while for ESI multiply charged ions are observed. Surface enhanced laser desorption (SEEDI) is a technique for the screening of protein biomarkers based on the mass spectrometric analysis of intact proteins [49]. However in most cases for sensitivity reasons mass spec-... [Pg.49]

ToF mass spectrometers as dynamic instruments gained popularity with the introduction of matrix assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) as effective pulsed ion sources for the soft ionization of large biomolecules (up to 10s dalton) due to their high ion transmission.38 ToF mass spectrometers, quadrupole analyzers and/or magnetic sector fields can be combined in tandem mass spectrometers (MS/MS) for the analysis of organic compounds. [Pg.133]

FAB and PD have been replaced by electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) in the analytical mass spectrometry laboratory, because both of these newer techniques have a wider mass range of analysis and have lower detection limits. ESI and MALDI have become invaluable ionization techniques for nonvolatile components. This is particularly true for a wide range of biological molecules including proteins, peptides, nucleic acids, etc. Samples can be analyzed by ESI using either direct injection or introduction through liquid chromatography. [Pg.204]

Usually, owing to insolubility or unacceptable buffers, large protein fragments are not beneficially analyzed by ESI-MS. However, the identity of stable domains of protein molecules can still be inferred from the accurate mass measurements of the smaller polypeptide fragments obtained from limited proteolysis. This provides a basis for resolving the compact domains for proteins in situations where matrix-assisted laser desorption ionization (MALDI) data are ambiguous and ESI-MS of the large protein may be precluded. [Pg.445]

Mass spectrometers are used not only to detect the masses of proteins and peptides, but also to identify the proteins, to compare patterns of proteins and peptides, and to scan tissue sections for specific masses. MS is able to do this by giving the mass-to-charge ratio of an ionized species as well as its relative abundance. For biological sample analysis, mass spectrometers are connected to an ionizing source, which is usually matrix-assisted laser desorption ionization (MALDI) [14], surface-enhanced laser desorption/ioni-zation (SELDI, a modified form of MALDI) [15], or electrospray ionization [16]. These interfaces enable the transfer of the peptides or proteins from the solid or liquid phase, respectively, to the gas (vacuum) phase inside the mass spectrometer. Both MALDI and electrospray ionization can be connected to different types of mass analyzers, such as quadrupole, quadruple-ion-traps, time of flight (TOF), or hybrid instruments such as quadrupole-TOF or Fourier transform-ion cyclotron resonance. Each of these instruments can... [Pg.163]

Most analytical studies using FT-ICR mass spectrometry, where ions have been produced inside (or just outside) the analyzer cell, have used lasers as ionization sources. Other than some very limited Cs secondary ion mass spectrometry (SIMS) studies [77], most research utilized direct laser desorption to form various organic [78] and inorganic [79] ions, including metal [80] and semiconductor [81] (including carbon) clusters. More recently matrix assisted laser desorption ionization (MALDI) has been used to form ions of high molecular weight from polymers [82] and many classes of biomolecules [83]. [Pg.357]


See other pages where Analyzed Laser Desorption Ionization MALDI is mentioned: [Pg.153]    [Pg.376]    [Pg.40]    [Pg.162]    [Pg.230]    [Pg.649]    [Pg.60]    [Pg.402]    [Pg.702]    [Pg.228]    [Pg.114]    [Pg.403]    [Pg.411]    [Pg.21]    [Pg.254]    [Pg.343]    [Pg.444]    [Pg.197]    [Pg.578]    [Pg.53]    [Pg.80]    [Pg.680]    [Pg.73]    [Pg.133]    [Pg.260]    [Pg.358]    [Pg.388]    [Pg.32]    [Pg.263]    [Pg.147]    [Pg.658]    [Pg.158]    [Pg.843]    [Pg.56]    [Pg.325]    [Pg.329]   


SEARCH



Desorption ionization

Laser desorption

Laser ionization

Laser ionizing

Lasers MALDI

MALDI

MALDI desorption/ionization

MALDI ionization

MALDI laser desorption

© 2024 chempedia.info