Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical application development

Recent Advances in the Development and Analytical Application of Biosensing Probes, Vol. 20, Chemical Rubber Co. Press, Boca Raton, Fla., 1988. [Pg.112]

Laser based mass spectrometric methods, such as laser ionization (LIMS) and laser ablation in combination with inductively coupled plasma mass spectrometry (LA-ICP-MS) are powerful analytical techniques for survey analysis of solid substances. To realize the analytical performances methods for the direct trace analysis of synthetic and natural crystals modification of a traditional analytical technique was necessary and suitable standard reference materials (SRM) were required. Recent developments allowed extending the range of analytical applications of LIMS and LA-ICP-MS will be presented and discussed. For example ... [Pg.425]

The large variability in elemental ion yields which is typical of the single-laser LIMS technique, has motivated the development of alternative techniques, that are collectively labeled post-ablation ionization (PAI) techniques. These variants of LIMS are characterized by the use of a second laser to ionize the neutral species removed (ablated) from the sample surface by the primary (ablating) laser. One PAI technique uses a high-power, frequency-quadrupled Nd-YAG laser (A, = 266 nm) to produce elemental ions from the ablated neutrals, through nonresonant multiphoton ionization (NRMPI). Because of the high photon flux available, 100% ionization efflciency can be achieved for most elements, and this reduces the differences in elemental ion yields that are typical of single-laser LIMS. A typical analytical application is discussed below. [Pg.588]

SynChropak GPC supports were introduced in 1978 as the first commercial columns for high-performance liquid chromatography of proteins. SynChropak GPC columns were based on research developed by Fred Regnier and coworkers in 1976 (1,2). The first columns were only available in 10-yu,m particles with a 100-A pore diameter, but as silica technology advanced, the range of available pore diameters increased and 5-yu,m particle diameters became available. SynChropak GPC and CATSEC occasionally were prepared on larger particles on a custom basis, but generally these products have been intended for analytical applications. [Pg.305]

In summary, it can be said that prior to the development of the thermospray interface there were an increasing nnmber of reports of the analytical application of LC-MS [3] bnt in this present anthor s opinion, based on a nnmber of years of using a moving-belt interface, the technique could not be considered to be routine . The thermospray interface changed this and with the commercial intro-dnction of the combined APCI/electrospray systems in the 1990s the technique, for it now may be considered as a true hybrid technique, has reached maturity (although this should not be taken as a suggestion that there will be no further developments). [Pg.135]

The active state of luminescence spectrometry today may be judged ly an examination of the 1988 issue of Fundamental Reviews of Analytical Chemistry (78), which divides its report titled Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry into about 27 specialized topical areas, depending on how you choose to count all the subdivisions. This profusion of luminescence topics in Fundamental Reviews is just the tip of the iceberg, because it omits all publications not primarily concerned with analytical applications. Fundamental Reviews does, however, represent a good cross-section of the available techniques because nearly every method for using luminescence in scientific studies eventually finds a use in some form of chemical analysis. Since it would be impossible to mention here all of the current important applications and developments in the entire universe of luminescence, this report continues with a look at progress in a few current areas that seem significant to the author for their potential impact on future work. [Pg.11]

El-Sayed, A.A.Y. and El-Salem, N.A., Recent developments of derivative spectrophotometry and their analytical applications. Anal. Sci., 21, 595, 2005. [Pg.545]

Arnold M.A., Meyerhoff M.E., Recent advances in the development and analytical applications ofbiosensing probes, CRC Crit. Revs. Anal. Chem. 1988 20 149-196. [Pg.351]

The participation of cations in redox reactions of metal hexacyanoferrates provides a unique opportunity for the development of chemical sensors for non-electroactive ions. The development of sensors for thallium (Tl+) [15], cesium (Cs+) [34], and potassium (K+) [35, 36] pioneered analytical applications of metal hexacyanoferrates (Table 13.1). Later, a number of cationic analytes were enlarged, including ammonium (NH4+) [37], rubidium (Rb+) [38], and even other mono- and divalent cations [39], In most cases the electrochemical techniques used were potentiometry and amperometry either under constant potential or in cyclic voltammetric regime. More recently, sensors for silver [29] and arsenite [40] on the basis of transition metal hexacyanoferrates were proposed. An apparent list of sensors for non-electroactive ions is presented in Table 13.1. [Pg.439]

In conclusion, the unique properties of Prussian blue and other transition metal hexa-cyanoferrates, which are advantageous over existing materials concerning their analytical applications, should be mentioned. First, metal hexacyanoferrates provide the possibility to develop amperometric sensors for non-electroactive cations. In contrast to common smart materials , the sensitivity and selectivity of metal hexacyanoferrates to such ions is provided by thermodynamic background non-electroactive cations are entrapped in the films for charge compensation upon redox reactions. [Pg.453]

Nuclear magnetic resonance (NMR) spectroscopy in pharmaceutical research has been used primarily in a classical, organic chemistry framework. Typical studies have included (1) the structure elucidation of compounds [1,2], (2) investigating chirality of drug substances [3,4], (3) the determination of cellular metabolism [5,6], and (4) protein studies [7-9], to name but a few. From the development perspective, NMR is traditionally used again for structure elucidation, but also for analytical applications [10]. In each case, solution-phase NMR has been utilized. It seems ironic that although —90% of the pharmaceutical products on the market exist in the solid form, solid state NMR is in its infancy as applied to pharmaceutical problem solving and methods development. [Pg.94]

Advances have been achieved in recent years, such as the use of CL reagents as labels to derivatize and sensitively determine analytes containing amine, carboxyl, hydroxy, thiol, and other functional groups and their application in HPLC and CE [35, 36], the synthesis and application of new acridinium esters [37], the development of enhanced CL detection of horseradish peroxidase (HRP) labels [38], the use of immobilization techniques for developing CL-based sensors [39-42], some developments of luminol-based CL in relation to its application to time-resolved or solid-surface analysis [43], and the analytical application of electrogenerated CL (ECL) [44-47], among others. [Pg.59]

The complex and sometimes competing issues of solubility, stability, and reactivity of reagents designed for purely aqueous POCL were addressed by Barnett et al. [21,22], who furthered the development of the trifluormethylsulfonyl-substituted oxamide class of reagents. They prepared disulfonic acid functionalised oxamides (see Fig. 4), which were found to possess a considerably improved degree of stability at both ambient and low temperature when compared to METQ, in addition to showing some promise as potential reagents in analytical applications. [Pg.144]

The oxidizing power of the catalytic sulfite ion/02 systems was utilized in oxidative cleavage of DNA (118-121), in an analytical application for the determination of sulfur dioxide in air (122) and in developing a luminescent probe for measuring oxygen uptake (123). [Pg.441]

The understanding of the nature of transient current after the imposition of a potential pulse is fundamental to the development of voltammetry and its analytical applications. Consider the same reaction, O+ne- = R, taking place in a quiet solution at a potential such that the reaction is diffusion controlled. Figure 18b.6a shows the pulse and Fig. 18b.6b shows the concentration gradient O as a function of time and distance from the electrode surface. [Pg.676]

The large majority of analytical applications are limited to middle infrared region. But in recent years interest has developed in near infra red and far infrared regions. [Pg.225]


See other pages where Analytical application development is mentioned: [Pg.26]    [Pg.24]    [Pg.330]    [Pg.26]    [Pg.24]    [Pg.330]    [Pg.1930]    [Pg.231]    [Pg.28]    [Pg.758]    [Pg.903]    [Pg.140]    [Pg.151]    [Pg.6]    [Pg.157]    [Pg.6]    [Pg.258]    [Pg.289]    [Pg.971]    [Pg.577]    [Pg.74]    [Pg.184]    [Pg.452]    [Pg.253]    [Pg.40]    [Pg.56]    [Pg.270]    [Pg.319]    [Pg.145]    [Pg.629]    [Pg.123]    [Pg.156]    [Pg.94]    [Pg.384]    [Pg.90]   


SEARCH



Applications analytical

Applications development

Developer application

Developing applications

© 2024 chempedia.info